On the Electron Spectrum of Crystalline Superstructures
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Abstract

Electron spectrum is analysed for the crystal that can be represented as a system of two
ordered structures nested one into the other. Intercalated layered crystals, crystalline
systems with the spin, charge, deformation or dipole ordering, the adsorbent-adsorbate
systems and the superstructures may be relevant examples. The detailed consideration of
the structures with incommensurable parameters of their lattices is presented. It is pointed
to a unique possibility for essential change in the electron spectrum, in particular for the

case of ferroelectrics.
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Introduction

Owing to modern technologies in the field of
semiconductor materials, physical parameters of
the latter have been allowed to meet the highest
requirements of microelectronics. In particular,
molecular beam epitaxy is capable of creating
artificial layered structures
parameters of their layers, the
superstructures. These structures built on the

with  designed
so-called

basis of broad classes of semiconductors, e.g.,
the classical semiconductors of group IV and the
AnByvi or ApBy materials, are featured by a
number of unique electric and optical properties
[1]. It is the reason for their wide applications in
the modern electronic engineering.

obtained with
introducing foreign atoms into a crystalline

Crystal structures
matrix may be considered as superstructures,
too. Under certain conditions, the atoms may
form an ordered structure. As a result, we would
have a system “crystal in crystal”. If the lattice
parameters of the crystals are multiples, a
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structure is distinguished as commensurate.
Contrary, if the parameters are
incommensurable to each other (this may be
peculiar of one, two or three crystallographic
directions), a structure is called
incommensurate.

Intercalated layered crystals [2,3] may
exemplify such the superstructures. Introducing
one or another impurity atoms into van der
Waals gap of a crystalline matrix of the layered
crystal and varying their amounts, one can
obtain crystals with different properties. At
certain concentrations of intercalated atoms,
ordering of intercalation complexes into the
superlattice structures has been observed at low
temperatures [2,3]. There has been a number of
studies confirming such the ordering, e.g., the
staged ordering of intercalates in graphite and
transition metal dichalcogenides [2,3] or the
intercalate ordering in van der Waals gap. In
diffuse

experiments in [4] have shown that there exist

particular, the X-ray  scattering
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the superlattices in Li TiS, at x=1/4 and x=1/2.
The study [5] has confirmed the existence of

J3ax~[3a superlattice at x=1/3. Some other

references dealing with the ordering of various
types in the intercalated layered crystals may be
found in [2]. Adsorbate-adsorbent systems may
to as two-dimensional

be referred quasi

superstructures. Then the adsorbate forms
sometimes the ordered structure, which can be
both commensurable and incommensurable with
respect to the crystalline matrix (see [6]).

A principal difference  from  the
superstructures mentioned above seems to be
significant. Here a role of foreign atoms inserted
into the crystalline matrix is played by the
charge or spin density waves, dipole ordering in
ferroelectrics below the critical temperature, etc.
Then the charge, the spin densities or the dipole
momentum may be considered as the sites in
some lattice-“pseudo-lattice”. Such the system
“lattice + pseudo-lattice” may be  both
commensurate and incommensurate. Below we
shall  show that

superstructures give rise to essential change in

peculiarities  of  the

their electron spectra.
Description of the incommensurate
structures differs fundamentally from that of
translation-invariant  structures, since the
momentum in the former does not represent a
quantum number. Seemingly, the common
diffraction methods for structural studies would
have been useless in this case. But it is just the
diffraction methods that have discovered the
ordering in the incommensurate structures. For
example, the additional Bragg reflexes (the so-
called anomalous satellites), which point to a
structural ordering, have been found in the
and the
electron-microscope studies of ferroelectrics
(see, e.g., [7]). On the other hand, even distorted

crystal structures possess the properties caused

radiographic, neutron diffraction

by characteristics of ideal crystalline structure,
such as the forbidden gap [8].
Therefore, while describing superstructure
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theoretically, it is possible to consider it as a
combination of two ordered structures nested
one into another. Then if, e.g., the electron
spectrum of each structure is known, the
should be
determined by the electron spectra of the

spectrum of the superstructure
substructures themselves and their interaction.

Electronic spectra of the commensurate
structures may be considered with the traditional
methods. This has been confirmed by the
investigations of electronic  spectra  of
superlattices in the direct-bandgap ApBvy; and
ABy semiconductors with perfectly matched
lattice parameters [9]. In this case, the effect of
the superstructure has been revealed to result in
modification of the electron behaviour, due to

additional potential Vg , acting along the

growth axis of the superstructure created with
the molecular-beam epitaxy. The electron
characteristics in the layer plane remain the
same as those of the initial structures. When the
lattice parameters are not matched (the case of
the incommensurable structure), the problem of
electron spectrum becomes more complicated.
Then the distortions of single-electron potential
in the plane of contacting structures should be
taken into account.

In this paper we analyse, in framework of
the suggested model, quantitative changes in the
electron

spectrum  imposed by  the

incommensurate structure.

Theoretical Model

Let us consider incommensurable crystalline
lattices, one of which is enclosed in the other.
Let the of the

structures be ¥, and V,, respectively, where the

single-electron potentials

index o (f) denotes the site in the first (or
second) structure. Then the Hamiltonian of the
system is

He- v ipean).
2m

Suppose that we know the wave functions
of the first (¥, (7)) and second (9 7))
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structures (O being the spin index). We may
expand the wave function ¢@_(7) of the system

described by Eq.(1) in a series in these
functions:

b5 (7) =2 oo (

a

Zaﬂ,% )

Let us transform Hamlltonlan (1) to the site
representation:

H= ZHI (aa,k:x—aca’cr + ZV2(aa,)C;crca'a +ZH2(ff,)q;aaf'o‘ +

ad'c ad'c

ZV ﬁ)afgafa+Z[V og’)cmafa+hc] Z[V fa afa M+hc]

o

where c,,c,,a;,a, mean the common creation

and destruction operators Here

J’\P PXT+V,(F ), (F)d’r, (4

jgpf NT+V,(7)) o, (F)d'r (5)
are the matrix elements (protoplasts of the
dispersion laws of the first and second
sublattices, respectively) and Vz(aa’) concerns
electron scattering at the lattice with the sites Ol
by the potential of the other lattice V, (the term
Vl( Vid ') has a similar meaning). The last two
terms in Eq. (3) describe scattering of electron at
Vi and V, with its transitions between the
different lattices. It may be shown that mixing
among the states localized at the sites in the
same sublattice, scattered by potential of the

other sublattice, is much less than that among
the sites of different

() Volaa’) <<V, (ef )V, (fer). This is why
we shall neglect ¥;(f") and ¥,(aa’) further on.
After

representation, Hamiltonian (3) takes the form

H = Z (kkkocka-i_ZE Q)aqo die t
- Tk

sublattices, 1i.e.,

passing to the momentum

, (6
+hc] ©

where

A6)= X el (R, B,

0)= 3 H,(")esplig(R, - R, ). (®)
4
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o

3)

afo

v(kg)= Z[V of )+ 7, (fer)]x

X exp(— ikR, )exp(iqR p )
Egs. (7) and (8) represent the dispersion

)

laws of the first and second sublattices, and

k and g respectively the momenta for them.

Calculation Technique and Solutions

We shall use the retarded double-time Green's
functions. Equation of motion for the Green's

functions <<

ay, Ay >> takes the form

The same for <<sz

a; >> , which appears in

Eq. (10), is as follows:
a)<<c% az . >> = S(E )<<CEU a, . >> +
+ZV(77 Vage| a0 )

Starting from the set of Egs. (10) and (11),

one obtains

(11)

+ .
aqza>> isa

solution of Eq. (12), which represents a second-

Therefore the Green's function <<aq6
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kind integral equation or the Fredholm's integral
equation [10].

Let us now analyse the cases, when the
potential V(Eq) (i.e., the kernel of the integral
(12)), s
v(kg)=F,(F)F,(7) (below we shall also

equation degenerated, 1.e.,

consider a more general class of V(Eq)). Then

Eq. (12) takes the form

+ _ 5‘7‘7» +
<<“qﬂ ang>> (

; (13)

where
CD] = ZFz(ql )<<aqlg‘a;26>> ’
q,

After multiplying Eq. (13) by F2(q) and

SRl

adding it to g, we get equation for @,.
Substituting its solution into Eq. (13), one yields

at g =g, the relation

s (14)
N ‘Fz(qy »
fo-£@l
AE)
where F(w)= w=&\k . (15)
B ‘Fl(af ‘Fz(q
: Z,;:a)—g(a)zq:w—E(q)

Finally, after performing transformations in
Eq. (14) and taking Eq. (15) into account, this

may be written as

. H(w_‘gp)l:[(w_
8 o -

r

Here we use the notations E, = E(r) and

£, Eg(p), where 7 and p are the moments

referred to the different sublattices. The poles of
the Green's function (16) describe the spectrum
of the problem under consideration.

Let us analyse some special cases of this
problem.

(a) Case of commensurable sublattices:

Then V(k7)= 5,&7V(l€) and it follows from

Eq. (12) that

(e a50)) = o W

We have therefore

=2 [E@)+ oa)+ (e@)-oa)} + 2r1a) |

In other words,

. (18)

the problem has been
reduced to a two-band model within the limits
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—ZEWH(w—

p#i r 2f¢r,q . ) (16)
o= I (7 T2

of superstructure. It can be seen that the mixing
integral between the bands tends to “repulse”
their positions, thus reminding the results
known for the two-level problem [11].

(b) Case of incommensurable sublattices:

As an example of this case, let us consider
a hypothetical structure with two states in every
sublattice. Then the pole of the Green's function
(16) is given by

(a)—gl)(a)—ez)(a)—El)(a)—Ez)—
|R0P@-e)r FR @-2))x . (o)
[P, (- E)+|E 1) (0~ £,)]=0

In this g(E) and
&,(E,) are respectively the bottom and the top

first "bands" of the sublattices (see Eq. (2)). The
analysis shows that the "bands" are “repulsed” if

V(Ez‘j) is taken into account. If & (£ (&,(E,

model problem,

(i.e., the "bands" are overlapped), taking V(l?q)
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into account causes pushing aside of bottom of
the lower "band" and the top of the upper one.
The top of the lower "band" can be “pulled”
down or up, depending on whether the relation

‘Fz (2]2(52 _El)
‘FZ(IY(Ez - 52)
Similarly, the bottom of the upper "band" would

is larger or smaller than unity.

tend downwards or upwards, depending on

‘Fl(l}z(‘gz - El)
FQ) (B -4)
larger than unity. In other words, the bandwidth

whether becomes smaller or

can be increased or decreased, depending on the
position of the levels and the magnitude of the
"interband" overlapping.

0.

94>

We stress also that the presented technique
is applicable to the problems with a more
common class of kernels in Eq.(12), when
compare with a degenerate one used above.
[10],
kernel may be approximated with a desirable

According to any uniform-continued

accuracy by degenerate kernels. One of the

methods is expanding V(l?q) in a Taylor series
at a certain point (Eq’) For the sake of con-
creteness, let it be the point (0,0). Then we have

V(kg)=(00)+ ak +bq +ak +ckq+...., (20)

where a, b and ¢ are the expansion coefficients.
Substituting Eq. (20) into Eq. (12), one
obtains

00) + a,k + a,k’

; 1
<<aéo‘aéza>>: 0-EG) o-E(3)

zﬂqu ({a0e

K O &

T O—&,
where

4 = [(V(OO)+ ak+ark? ) (b, +ck)+ h.c.],

4y = b2 (7(00)+ ayk + k4 by + ekl + e .

The latter equation may be rewritten as
0. 1 2
oy, |z, ) =1+ R®,,
) E(q) w—E(q);
a

a)_
where ®n=2qf< o
4

a,, >> and R,

coefficients.
Repeating the procedure for eliminating
@, mentioned above, we get the equation

similar to Eq. (14).

Conclusions

In this work the technique for solving the
stationary Schrodinger equation for crystalline
systems is represented, where the single-
electron potential include the two terms. They
both describe the ordered structures, generally
with the different lattice parameters. In case of

the commensurable parameters (a, = mb,;, with
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o
(@,

k

o)) S 2

‘ ;<<an0 a;a >> +

-,

a;a>>+... }

a; and b, being the lattice parameters, m an

integer and 7 = x, y, z), the technique leads to the
known equation describing electron behaviour
in a crystalline lattice with a basis. The major
outcome of the present work is application of
this technique to the problem of electron
spectrum in the systems with incommensurable
lattice parameters. Dependence of the bands on
the magnitude of the mutual electronic mixing is
illustrated on a rather simple example. It is
shown that in the case of overlapped bands, the
degree of overlapping can increase or decrease,
depending on the magnitude of the mixing.
Nonetheless, the distance between the bottom of
the lower band and the top of the upper one
increases in any case. We have analysed the
problem of the interband interaction potential,
too. It is revealed that the superstructure
(especially the
fundamentally different

incommensurate one) has
of the

electron spectrum (or the density of electron

properties

states), if compare with the properties of basic
structures forming the superstructure. It is
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worthwhile to point at a unique possibility for
varying the electron spectrum in the case of
For

“lattice + pseudo-lattice”. example, a

ferroelectric phase transition between the
paraelectric and ferroelectric states gives rise to
appearance of such the pseudo-lattice, and so to

essential change in the electron spectrum.
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