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Abstract

Diffraction of Gaussian beam by the system of successive optical wedges is considered. It
is shown that the system can form high-order optical vortices. The effectiveness of the
system is about 90%. The number of wedges in the system defines the topological charge

value.
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Creation of high-order optical vortices has been
hitherto based on the
technique [1], the computer-generated holo-

phase-transparency

grams [2] and the polarized transformations in
uniaxial crystals [3]. It has been considered for a
long time that the high-order optical vortices are
structurally instable due to the light diffraction
by an aperture. Recently, we have shown [4]
that a non-singular laser beam can be converted
into a chain of optical vortices by the dielectric
wedge. The obtained beams have specific
properties, which are absolutely different from
those in the Laguerre-Gaussian beams. Their
main property is structural stability.

The aim of the present paper is to study
physical mechanism for high-order optical
vortices produced by the dielectric-wedge
system.

Let the fundamental Gaussian beam with
the wave function

¥,(r.2) =Mexp(—%J ()
o po

(r’=x*+y%, z,=kp®/2 being the Rayleigh

length, o =1+iz/z, and p the waist radius at
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z=0) be diffracted by the edge of the dielectric
wedge, which has the refractive index

n(x)= {" >0 @)

1, x<0’

where n,, denotes the refractive index of the
transparency.

The wave function of the beam at the
wedge plane z=0 is

qu (xa-yao): lPOO (X, y,O)X
xexpliky[n(x)—1]xtga+ikd}’

where d is the wedge thickness at the beam axis:

3)

d=[n(x)—1][2m+l]§, m=0,1,2,3.... (4)

As shown in the work [4], the wave
function of the beam in the far-field diffraction
region has the form:

¥, (x,,2)~ %5‘1’0 (x, y,z){expliky tan B)x

: : (%)
x exp(i H)erfc{%] + erfc{— %]

where @ = kd is the additional phase of the
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wave transmitting through the wedge substrate.

The diffraction process presented by Eq. (5)
enables us to transform the smooth Gaussian
beam into the singular beam, using the chain of
optical vortices. In order to select the single op-
tical vortex from the vortex chain, it is necessary
to meet the phase matching conditions:

(\E+X]exp(—X2)=\E (6)

where X =,/kz, 4 and A=(n, —1)1ga, so that

the thickness of the wedge substrate satisfies the
requirement:

h=mA, m=123,... (7)

Now let the beam transmit through two

successive wedges (see Fig.1). The wedges

have the same slope angles 1 and /, while the

transparencies are inclined at the angle a to each

other. The beam transformed by the system of
optical wedges may be presented as

_ 1 / /o
lPZ(xayaZ)_E!JdS lIll(x sy aO)X

xexp{— i% (x — x')2 +(y—yr)2 }X ®)

z

X exp {ik(af2 n(x))— z) X

x exp{iky'n(x)tan(, )}
where d; and d, are the thicknesses of the first
and second wedges at the beam axis and
(x,y] =0,z=0) stands for the boundary of the

second wedge, so that we have

{xﬂ =x' cos(a) - y' sin(ax)

' =y cos(ar) +x’ sin(a).

(€))

The presence of the second wedge changes
the phase matching condition (7). The thickness
d,; of each wedge at the beam axis has to meet
the following requirement:
_A(@2m+1)
T2, -1
Then the phase difference between the

m=012.... (10)

1

part of the beam transmitting through the wedge
and the beam spreading in air would be
O=r(2m+1), m=012... (11)
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Fig. 1.
system.

The sketch of the double-wedge

Consequently, the thickness d> of the

second wedge is
dr, =(m+1)d, m=0,1,.... (12)

Let us rotate the wedge around the Gaussian
beam axis by a (Fig. 1). Consider the two cases
of mutual orientation of the wedges:

(1) The wedges are positioned so that o=0
and S =- S

If 0<a <, the vortex is not formed at the
beam axis since the system is equivalent to a
plane-parallel plate.

(2) The wedges are positioned so that a=0

and S, = A (Fig. 2a).
m‘l—‘f'-.‘ Ay

Fig. 2. Intensity distributions in the beam
diffracted by the double-wedge system: the
vortex chains in the mismatched (a) and
matched (b) systems (a=0, n; p=3mm; n,=1.5);
experimental (c) and theoretical (d) patterns in
the matched system for a=n/2; (e) experimental
interference spiral.
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This case is of the most interest. Let us
consider the situation in a detail:
(a) @ = 7 m . Then the wave function of the

beam after the system of wedges may be
expressed, up to a constant factor, as

. ikx
W(r,z) ~2¥,(r, Z){l erf[Ej x (13)
x sinfky(n —1)tg(3)] - cos[ky(n —1)ig( )]}

¥(r,z)~ ¥, (r, z){erfc[— \/@} rfi [ \/7 ] — explikx tan S) erfc{ \/E

\2zo

+ exp(zk(x + y,)tan ) erfcl:

Since we have

umlv(r,z)z@%(nz)exp(iw) (15)

r—0

(with f(x,y,a, B, ,) being responsible for the

amplitude distribution in the beam), the double
optical vortex is indeed positioned at the beam
axis.

Our problem may be extended to the
general case of n wedges. We shall in detail
consider this case in the experiment.

Experiment

It has turned out that the cover glasses for a
microscope have a slight slope of their planes
and so could be used as dielectric wedges.

We have selected the two glasses with the
identical optical thicknesses and the angles £
and f, very close to each other. One of the
wedges is rotated by the angle o (see Fig. 1) and
the intensity distribution in the diffracted beam
is observed in the far-field region (i.e., at the
distance about 1 m from the wedge). The results
obtained are shown in Fig. 2. At first, the edges
of the transparencies are slightly moved aside
and their verges are parallel to each other (a=0).
The system is illuminated with a broad beam
(the waist radius is about 3 mm). The diffracted
beam forms two vortex chains (Fig. 1a). After
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2z0

f}{f

where n is the refractive index of the wedges.

It follows from Eq. (13) that the number of
optical vortices at the boundary between the
wedges is doubled but the optical vortex is not
generated at the optical axis (see Fig. 2b).

(b) O<a<m. The topological charge of the
optical vortex is now doubled at the beam axis
(see Fig. 1c-e). This may be shown with Eq. (8)
rewritten in the form

m] fcl_ﬁy+
2z0

(14)

\J2zo \2zo

} - exp(lky1 tan ) erfc{ ik x } erfc{ﬁ 24 :l}

the transparencies are moved together, the two
chains flow together into a single vortex chain
(Fig.2b). The cores of the single vortices in the
chain have an elliptic form. The major ellipse
all the
vortices in the chain have the same topological

axes are equally directed. Besides,

charge. The rotation of one of the wedges results
in transforming the topological structure of the
central vortices. Its charge is doubled. At the
same time, the topological structure for the rest
of vortices remains unchanged (see Fig. 2¢,d).

Fig. 3. Experimental intensity distribution (a,c)
and interference patterns (b,d) of the optical
vortices with topological charges =3 (a, b) and
I=4 (c, d). The waist of the beam is p=1.5 mm.

Similarly, one can construct a system for
generating high-order vortices.
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The singular beam with the topological
charge /=3 is obtained in case of a triple-wedge
system provided that o,=a,=0;=m/3 (see Fig.
3a,b).

The system containing four wedges with the
angles o,=o,=0;=m/4 generates the singular
beam with the topological charge /=4 (Fig.
3c,d).

Conclusions

Thus, we have shown both experimentally and
theoretically that the system consisting of some
optical wedges can generate high-order optical
vortices. The energy effectiveness of the system
is about 90%. The topological charge of the
vortex is defined by the number of wedges in the
system.
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