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Abstract

We described propagation of light beams in uniaxial crystals. We solved the paraxial wave
equation and find a full set of Laguerre-Gaussian beams with a complex argument. We
showed that any light beam could be expressed by the superposition of the mode beams in
the crystal. We found the conformity between the presented theory and the representations
of the fields in other theories and showed that conversion of the Laguerre-Gaussian beams
with the indices # =0 (and m being arbitrary) can be considered on the base of Jones’s

matrix formalism.
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Most lasers oscillate with a transverse electric
field distribution that can be rather accurately
described in terms of the paraxial Laguerre-
Gaussian beams [1]. These mode beams are
stable
equations. It means that a beam field on

structurally solutions to Maxwell’s
propagation remains without any changing if we
ignore its radial scaling. At the same time, on
propagation of the similar beams in uniaxial
crystals their topological field structure can
experience essential transformations as a result
of the events of the birth and death of the phase
singularities [2, 3]. To present day, the basic
method of the field description in crystals is
founded on the plane wave representation: the
given propagation direction is put in accordance
to a plane wave. The field is represented by the
angular-spectral integral over all propagation
directions (see, e.g., [3]). In the most practically
important cases, however, the spectral integral
cannot be found in the exact form while
important traits of a singular beam can be lost in
the result of the approximate integration. This
deficiency vanishes in the method of the
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Laguerre-Gaussian beams.

Recently we have shown [2] that the
circularly polarized Gaussian beam propagating
along the optical axis in a uniaxial crystal gained
absolutely new properties not inherent in the
initial one. In fact, there appears the
orthogonally polarized vortex-bearing beam in
the light flow emitted from the crystal. The
optical vortex [4] in the induced singular beam
has a double topological charge. Its sign is
defined by the direction of the electric vector
circulation in the initial beam. Although the
method enables us to use the simple Jones’s
matrix formalism to calculate complex optical
devices, it is an approximate one. Besides, the
authors didn’t define the limits of applicability
of this technique.

In the given article we present the exact
solution of the paraxial wave equation in terms
of the Laguerre-Gaussian beams with the
complex argument in uniaxial crystals and
define the link between the given method and
the approximate method in the article [2].

Consider an anisotropic medium with the
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permittivity tensor in the form:é =diagle ,},
Jj=123n ,,=¢€,=¢, &, =& . If a paraxial
light beam propagates along the z-axis the
vector wave equation can be rewritten as

(V2 + k2 )E=aV(V,E,), (1)
where k, is the wave vector in free space,
a=Acls, Ae=¢ —¢&,. As far as we deal with
the paraxial beams so that
(zo=kp’/2, k:kOJZ and p is the beam

waist radius at z=0) then eq. (1) can be

kzy>>1

transformed into the paraxial wave equation
~ A ~
(v2+2ik0.)E,=—22v,(v,E,), @
£
where E,=E,(x, y,z)exp(i l:z) and E, stands
for the transverse electric vector E, = {Ex E y}

while the longitudinal E_ component can be

found from the equation

1 ~
Ezz—EVtEt. 3)
being the consequence of the equation
V, E= 0 and the paraxial condition kz, >>1.

The solutions of eq. (2) are
E =V,¥, “)
E, =Vx(a¥), 5

where the wavefunction W satisfies the
paraxial wave equation

(vf +2iﬂ%}‘1’= 0, (6)

where f is some wavenumber and a is the
a, az}.

Choose the vector a in the form a={0,0,1}

vector with the components {ax

and

\P:iexp[ r; ] 7
o \p

Then the solution of the paraxial wave
equation (2) can be found from eq. (5) as
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2 . N
P (Xy_yx)\PE =
P Og

|1 1>TE:_
, (8)

=i 27” [é* exp(— i(p)— ¢ exp(i(p)] ¥,
P Og

where ¢" =X+iy, ¢ =Xx-iy are the unit

vectors in the circularly polarized basis,

op=1+iz/z,; =0 so that z,, =z, and the
wavenumber of |1 1>TE mode beam is
P=k,=k. )

Besides, we find the second solution of
eq.(2) from egs. (4) and (7):

2
1 1), = (kx+§y)¥, =
‘ >TM szM M , (10)

= 2r [é+ exp(—ip)+¢” exp(igp)] ¥,
P Oy

where o, =1+iz/zy,, zoy =kyp’ /2,

2

Y, = exp{— ; ]/ o, and the wavenumber

P Oy

of |1 1>TM mode beam is

k &
=k, =—f =k, 11
B=ky —a s (11)

In order to find the full set of the mode
beams we form the operator

n l
) - 0 (iiiiJ . (12)

()

n,l

As far as the operator L/ commutates

with the operator ﬁ:Vf +2ikai , then the
z

functions
n m) =it (13)
are also the solutions of the eq. (2) without the

right part. The Laguerre-Gaussian beam can be
obtained from eq. (13) as

o = 2]

(po)™ \po

2 2
xL’:( r2 Jexp(— r2 ]exp(ir im(o)
po po

where L (x) is a Laguerre’s polynomial.

. (14)

Ukr. J. Phys. Opt. V5. Ne3



Laguerre-Gaussian Beams in Uniaxial Crystals

The right part of the eq. (2) transforms ) |1 >
. ) |7’l' mr>(+) ( ) TE (15)
essentially the solutions (14). Now we have to TE.;TM il |1 1> :
find the solution in the form

Using eqs (8), (10) and (15), after some mathematics we find

n+1 l+l>(T+E):

-1 . 2 2 2 s (16)
4, r eXp( (5+1+})(0) X{ ( +1) (n+1)( ’2’ j_,_é p’z’a L(1+1)(R2)6Xp(l2¢)}xexp[ r J
E

po—E P Ok po—E

ln+1 1+1)) =

L an
-1 . 2 2 2 2
at eng—;ffgl)@{a ; Lw(; Jexp(_i2¢)+e(n+1> gg[; j}p[ r ]
P Og P O

P Ok P Og P O
n+1 l+l):\; =
, (18)
1 ) 2 . 2 2 2
:AM exfl)( Sim) )>< c*(n+1)L(nl+1l)( 2}’ j—c : L(,f”)( : jexp(iZgo) xexp[— Zr
P Oy P Oy P Oum P Oy P Oy

n+1 l+l>(T;& =

7 .(19)
' exp(—i(l -1 7t . P’ . R r’ r?
=4y ,Ogl(anflﬂ )(p) X4¢€ 2 L(rf ) 2 e ¢ (n + l)L('l+1) 2 XeXp T

M P Oy P Ou P Oy P Oy
where However, the expressions obtained do not
(_ 2)"”1’"”;7! (_ 2)"+li”n! describe the light wave transformations for the
A = 2 s Ay = 7 |n' O) - Laguerre- Gaussian beams. In order to
0F oM
and n,m> 0. The beams with indices n=0 and find two missing beam groups |” 0>TE and
m=0 are set by eqs.(8) and (10). |n' 0>TM it remarks that the expressions
2
|0 1 _ﬂl z:izﬂx(é+ exp(-ip)—¢& exp(igo))xexp(— : J , (20)
r p oL
7’2
|0 1 TM ﬂl 1 dz— . (c exp( i(0)+c_ exp(iq)))x exp[— > J 21
P Oy
are also the solutions of eq. (2). From eqs n"=0 we find the missing beam

(12), (20) and (21) provided that groups

2
o l+1>¥E:=BE{" “oalill-le) ¢y I ewlilto) “}xexp[— ; ] (22)

(p O-E) = J! (/7 O'E) po

T Lm LIS W (S

oo, & letou)
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0 7+1); ==BE{6*2“ XU 1g) ot o ”l_le"p(‘i(l‘l)q’)}xexp(— &
TE 2

=0 ]'!(P ZO'E)j

I .
0 1+1) :BM{FZH epl-il+lp)

S jleloy)

where B, =(-1)"z,;2" B, =(-1)"z,,2".
Now the set of the Laguerre-Gaussian beams
represented by eqs (16)-(19) and (22)-(25) is a
full one and any light beam at the z=0 plane can
be expressed by means of the superposition of
these equations. It should be noted that this
superposition enables us to get rid of the
amplitude uncertainty sprung up in eqs (22)-(25)
at the axis r=0.

Involves attention the fact that the
expression
_ r _ rz
2
| e’ % e”r?
) o & ; -
P o, O,
2 2
, o e_pzo
—& e - + (26)
r
r2 2
o _
1 e PO, e P Op
+— -
P o, O

obtained as the superposition eqs (22) and (24)
coincides with the identical expression in the
article [3] obtained by the spectral integral
technique. The wave function in eq. (26) reflects
the evolution of the initial fundamental Gaussian
beam: the topological structure of the beam
component with initial circular polarization ¢”
does not undergo any transformations while
there is the phase singularity in the form of the
optical vortex with the double topological
charge nested in the beam with the ¢ -

polarization component.

&4

21 _ g P! exp(— l'(l - 1)¢)} X exp{— -
2
P

+

P Of

} . (24)

(p ZUEy

J, (25)
Of

On the other hand, the problem of the beam
transformation in  the

(/’ "oy )Z

crystal can be
approximately solved by other way as in article
[2]. Indeed, a Gaussian beam can be represented
as a superposition of light rays localized on the
surface of hyperboloids. Each a ray is associated
with a plane wave. The wave propagation
through the crystal is described on the base of
Jones’s matrix formalism. As a result, we obtain
the approximate expressions that are in a good
agreement with the experiment.

Consider some conformity between the
exact theory presented above and the
approximate results obtained in [2]. As far as the

condition & =Ag /g <<1 takes place in a real

crystal then
At 1,z
Op Oy Zop O
, (27)
1 1 2

~ . z
=0y +i——.
ZoE

where Using now the

superposition ¥, =|O l+1>TM —i|0 l+1>
eqs (22) and (23) we find
¥, =x[r/c]" [é* cos(5/2)+
+¢i sin(5/2)exp(i2gp)]><

p[ ;j&jexpa(z—l)m

where & ~kAnr®/z provided that Aex2n,An
and Ae~2n,An. The last

TE °

, (28)

condition

corresponds to a real light focusing in crystals.

The equation (28) coincides with the identical

Ukr. J. Phys. Opt. V5. Ne3



Laguerre-Gaussian Beams in Uniaxial Crystals

IO.06 b) (}2 d)
I
1 0.04 I
ﬂ 1 0.1 !
0.02 1 f /
0.8 ' 0.8 ]
0 0.75 0.85 095 T 00.7 0.8 0.9 T
o | \ "
0.4 0.4
02 “ ‘
0 0.4 08 I -0.8 0.4 0 0.4 08 T
a) c)
| N1 I1
0.8 T 0.8 m
\ 1 T
0.6 E 0.6 ]
0.41 0.41 /A\ Iﬁ\
0.2 0.2 \/ t
Ny
0~ SN — ‘ 0
0.8 0.4 0 0.4 08 T 08 -0.4 0 0.4 08 T
e) f)

Fig.1. The theoretical and experimental intensity distributions of the high-order mode beams: (a,e) —

n=m=0, ¢°

- component; (b) — the fine structure of the curve in Fig.1a; (¢) — n=m=1,

¢ - component; (d) the fine structure of the curve in Fig.1c; (curve 1 — the exact theory, curve 2 —the
approximate theory) (f) n=m=1, ¢* - component (T — the approximate theory, E- the experiment).

approximate expression in the work [2] up to the
constant factor.

Two set of the curves — 1 and 2 presented
in Fig.1(a-d) illustrate the dependency of the
beam intensity / on the radial coordinate 7.
The curves 1 are calculated in accordance with
the expression (26) while the approximate eq.
(28) is associated with the curves 2. The curves
in Fig.1(e,f) point out a good agreement between
the theory and experiment in the work [2]. At
the same time, a good agreement of the
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approximate and exact theory is broken for the
beams with indices 7 > 1.
Thus,

equation we have obtained exaxt expressions for

starting from the vector wave
the full set of the Laguerre-Gaussian beams with
a complex argument inside a uniaxial crystal.
We have discussed the limits of applicability of
the approximate theory worked out in the article
[2] and thereby showed that Jones’s matrix for-
malism can be used for description of the beam

propagation in a uniaxial crystal. At the same
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time, the matrix formalism in the given form
cannot be expanded on the Laguerre-Gaussian
beams with the » >1 radial indices.

References

1. Kogelnik H., Le T. Proc. IEEE 54 (1966)
p-1312.

86

Volyar A.V., Fadeyeva T.A., Opt. and
Spectr. 94 No2 (2003) p.260.(in Russian).
Ciattoni A., Cincotti G., Palma. C. J. Opt.
Soc. Am. 17 (2003) p.163.

Soskin M. S., Vasnetsov M.V. Progress in
Optics 42 (2002) p.219.

Ukr. J. Phys. Opt. V5. Ne3



