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Abstract

It is shown that, in the model of a flat 3D space, the time (i.e., the Hubble or the gravitation
constant) plays a role of a spatial property. Gravitation field of spherical central mass does
not lead to a lowering of symmetry of the space and appearance of anisotropy. In particular,
the relations that describe the changes in the refractive indices of the space treated as an
optical medium near the massive spherical body under the influence of its gravitation field

have been derived.
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Introduction

The idea of anisotropic Universe belongs to
Kantowski and Sachs [1]. According to this
hypothesis, expansion of the Universe is not the
same in different directions. Unfortunately, there
have not yet been the experimental results which
could confirm for certain or reject the
Kantowski’s and Sachs’s model of the Universe.
Moreover, as far as we know, the cosmology
mainly disposes rather poor experimental facts.
Among these facts, one can recall a red shift, a
perihelion shift, a radar echo delay and light
deflection by massive objects and a background
microwave radiation, all of which are known
from the basic physics (see, e.g., [2]). However,
recent results obtained in different laboratories
(see, e.g., [3]) have revealed anisotropy of the
background radiation,  thus

suggesting anisotropy of the local Universe. On

microwave

the other side, the approach offered by Kamal,
Nandi and Anwarul Islam [4], Evans [5] and
Fernando de Felice [6] for the description of
optical phenomena in gravitation field has been
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based on optical-mechanical analogy of general
relativity and a refractive medium characterized
with some effective refractive index. This
approach makes an important bridge between
the geometric general relativity and physical
optics. Furthermore, the authors [5,6] have
considered the optical medium, following from
the assumptions of its three-dimensionality,
flatness, inhomogeneity and isotropy. Besides,
the gravitation field is a vectorial one, whose
presence could lead to a lowering of symmetry

of the space (or the matter). Moreover,
inhomogeneous matter should be usually
anisotropic.

The present report is devoted to analysis of
optical properties of the space induced by the
gravitation field.

Refractive index dependence on the
gravitation field

According to [5,6], the coordinate dependence
of the refractive index change in the gravitation

field of spherical mass may be written as
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M . o
— > G is the gravitation constant,
o

where m =

r the Euclidean radial coordinate, M the
spherically symmetric mass and ¢, the light
velocity for the free space. For example, the
effective refraction index calculated on the basis
of Eq. (1) for the vicinity of the Sun surface is
n=1.000004248. Let us notice that, at first blush,
Eq. (1) does not
coefficients that could characterize the space

include any material

and the matter and link the gravitation field

with the refractive index of

GM
strength g =—
-
the space (or the so-called “optical medium”, in
terms of [5,6]). Upon a closer examination,
Eq. (1) could be easily presented as a function

n(g) of the gravitation field after introducing

r==% /G—M (at this stage we neglect the minus
g

sign, because the radial coordinate can acquire
only positive values):
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It 1is seen
(GMg)l/Z
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already from Eq.(2) that

< 1. On the other hand, the quantity

G, i.e. the gravitation coefficient, can in general
manifest properties of a polar rank-two tensor,
since it relates with each other the two polar
vectors in the Newtonian gravitation equation.
Eq. (2) may be simplified with accounting

(GMg)l/Z

2
Co

for that <« 1. Really, this value is of

the order of 107, e.g., at the surface of the Sun.
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As a result, the refractive index and optical-
frequency dielectric impermeability constant

1 .
B, = (n_zj may be presented as a power series,
i
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The signs “+” appear in Egs. (3) and (4)
once more in consequence of taking the square
root (g"?),. Let us now analyze Egs. (3), (4).
First of all, one can neglect the terms of third
and fourth orders, since they are very small.
Thus, Egs.(3) and (4) may be rewritten as

2
n:liz G#(gl/Z)k+3( G]yj (gl/Z)}Z{’ (5)
V S S

2
M GM | .
B, =1%4 c—4(g”2)k+2( = ] (€"*)%. (6)

o

Introducing the notation
2
B :( %j 224’ we rewrite Egs. (5) and
Co CO

(6) in the form

n= lileﬂy'k/M(gl/z)k +3ﬂi,-k1M(§”2)§ > (7)

Bij =1 $4\,ﬂijklM(g”2)k +2ﬂijklM(gl/2)2k > (8)

where Sy stands for a fourth-rank polar tensor.

. . .G
It is interesting to recall that the quantity —-
c()

plays a role of coupling coefficient between the
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metric tensor (the Ricci’s tensor) and the energy-
momentum tensor in the general relativity
relation. The tensor [, represents a material
tensor of the space. While assuming the space to
be an isotropic matter in its initial state, we may
define its symmetry as od/oo/mmm. Let us
of ﬂijkls
B = G
W

0

analyze the symmetry properties

following from the relation

Obviously, they depend on the properties of the
coefficient G, which should be, in general, an
asymmetric rank-two polar tensor (G;#Gj;), with
the following limiting properties:

a) ascalar, G;

b) asymmetric tensor, G, = %(an +G,)5

¢) an antisymmetric tensor, G, = %(an -G,)-

In the case (a) we have

G
,Bijkz =

, where the
(¢y; % Co; X Cop X Cor)

denominator represents a dyadic product of four
polar vectors and so By is fully symmetric
fourth-rank polar tensor with the internal
symmetry [V*].

The symmetric part of the tensor G,, can
exist in the space with lowered symmetry. Then

np
([eg; % CO_/']k [Cor X Cor 1))

a case, the form of the tensor and the number of

. In such

we have g, =

its independent components would depend upon
particular symmetry of the space.

The antisymmetric part of G,, is an axial
vector (pseudo-vector). This vector is nonzero
for the space belonging to the symmetry groups,
which are subgroups of the axial vector group
(co/m). According to the tensor product rules,

G,
((coico)ee X €y 1)

denominator manifests properties of a third-rank

one has f. = , where the

Y

axial tensor. In this case S, is a fourth-rank
polar tensor symmetric in its first three indices
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[VI’V).  The

antisymmetic part of G,, may be essential if

(the internal  symmetry
massive rotation singularities exist in the space.

The next question that appears in the
analysis of these relations is as follows: what
tensorial properties are characteristic of the
quantities which include the gravitation field
strength (g'%), and (g"*); ? Both the quantities

&) =g xg) =g and
@&, =@, :J_r\/m are scalars. One can

therefore come to the conclusion that the
gravitation field of spherical mass as the action
itself cannot lead to lowering of symmetry of the
space. In other words, initially isotropic space
with the symmetry o/oco/mmm would remain
isotropic under the action of the gravitation field
of spherical mass. Moreover, the sign “t” near
the odd-power terms correspond to possible
opposite signs of the gravitation field. As seen
from Eq. (7), in case of a negative gravitation
field, the odd-power terms turn out to be
negative and might therefore have led to
decrease in the refractive index down to the
values less than unity, resulting increase of the
light velocity up to the values higher than c,.

For the case of spherical massive body,

g

is a scalar, and then the tensor S, may be

convolved into a second-rank tensor f;, with the

properties:

a) ofa scalar;

b) ofa symmetric tensor;

c) of an antisymmetric tensor (or, quite
equivalent, an axial vector).

Let us now estimate the change of the
refractive index (or the light velocity), e.g., for
the light beam propagating from the Sun
towards the Earth under the gravitation field of
Sun. The relevant coefficient is equal to
B,=8.27x10%s’/mxkg. One can neglect in

Egs. (7) and (8) a very small quadratic term. As
a result, these equations yield in

n:1+2\[ﬂf/M(g”2) > (9)
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B, =1-4/p,M(g"). (10)

Taking the solar mass and radius values
(M; =1.991x10°kg and R, =6.96x10°m), we
have g=273.98m/s> and so the change in the
refractive index induced by the gravitation field
of the Sun on its surface becomes An=0.42x10".
This very small value is the same as that
calculated on the basis of Eq. (1). However, the
light path might be large enough at the cosmic
scales. The resulting optical retardation can
therefore be quite accessible for practical
experimental measurements. Besides, the Sun
may appear to be not the best example. There
exist many other massive objects in the Universe
that produce much stronger gravitation fields,
such as neutron stars or white drafts.

In the presence of large massive objects,
the light beam changes gradually its propagation
direction. It is interesting to notice that this well-
known effect, which follows from the Einstein
geometrical general relativity, may be equally
well described in frame of the flat space model,
with taking the to be
inhomogeneously distributed through the beam

refraction index
cross-section [6]. Therefore, while estimating
the total optical path difference occurring for the
light passing from a massive body (e.g., from
the Sun to the Earth), one can represent it with
the relation

! ! MG
A= |An(Ddl =2 |\|B M. |——di=
R:" ]’l( ) R‘!. ﬂll K (R‘ +l)2

({+R)
2M (B, IG)I/Z 1117

s

, (8)

R, denotes the Sun radius and
[=150x10’m the distance between the Sun and
the Earth (the semi-major axis). Taking into

e=0.016707 for T = J2004.5 (see

e.2.[7]) ln=152.09x10°m (aphelion distance)
and /,,,=147.09x10°m (perihelion distance), we
A, =13.897 km and

where

account

derive

A, =13.798 km for the mentioned example.
It is evident that the optical path difference
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induced by the gravitation field of the Sun is
quite large even for the case of light propagation
from the Sun to the Earth. Thus, the delay of
light coming from the Sun to the Earth is

A

At =—.

G
With ¢,=2.99792458x10°m/s it is equal to
At =4.636-10"s and Ar,;, =4.603-10"s as

max min

well asS(Af)=At,, — At =33x10"s. The

effect of the gravitation-induced change of the
light speed should become experimentally
accessible for the electromagnetic waves passing
from satellites to surfaces of planets and back,
while employing the measurements of time
delay of the returned signal.

Returning to the question of possible optical
anisotropy of the space induced with the
gravitation field, one can suppose that the
gravitation field of non-spherical mass would
lead to lowering of the space symmetry,
appearance of its anisotropy and so optical
birefringence. On the other hand, we may
assume that the anisotropy could also appear due
to either interaction of the gravitation field with
the other fields (e.g., the magnetic one,

AB, ~ g"?H,) or existence of considerable

gradients of the field (e.g.,

AB; ~ o°(g)"* 1 ox,ox, ).

gravitation

It is worth noticing that the quantities  and
G are material coefficients of the flat space (or
the corresponding optical medium) and should
therefore obey von Neumann principle. Hence,
lowering of initially spherical symmetry of the
space by the gravitation field or the other fields
can lead to appearance of tensorial properties of
the G coefficient. Moreover, if f and G are
material coefficients, then it follows, e.g., from
Hubble

the relation for the constant

H? :g p.nG (with p, being the critical density
of the Universe), that the above constant

. ..
(because of the relation H =—, this is true of the
t
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time, too) plays a role of property of the flat
space in the model of optical medium. The
existing fields lead to lowering of the space
symmetry, and these lowered groups allow
subsequently lowering of symmetry of the
properties of the space, i.e., the symmetry of the
time (or that of the Hubble and the gravitation
constants). Therefore, due to the Neumann
principle, the symmetry group of the flat space
should depend on the field configuration and,
following the Curie symmetry principle, it
should be a subgroup of symmetry group of the
time.

Conclusions

Hence, we have shown in the present paper that
the time (as well as the Hubble or the gravitation
constants) plays a role of spatial property within
the model of a flat 3D space. It is assumed that
the fields existing in the space could lead to
lowering of symmetry of the space and
appearance of its anisotropy. The relations that
describe changes, due to influence of the
gravitation field of spherically symmetric mass,
in the refractive indices of the space (taken as an
optical medium) have been derived for the
vicinity of a massive spherical body. We have
also obtained the relation for description of
changes in optical impermeability of the space
near the spherical mass. It looks as follows:

B[j :1_4\[ﬂg‘M(g”2) 5

where [, = is a second-rank polar tensor

i T 4
Co

representing a material coefficient of the space.
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The optical path difference is estimated to be
A, =13.897km for the light beam passing

from the Sun surface to the Earth (in aphelion)
and the corresponding delay of light is equal to

At =4.636-107s. It is shown that initially

isotropic space with the symmetry oo/oco/mmm
should remain optically isotropic under the
action of the gravitation field of spherical
massive body, though the anisotropy may appear
in the
configurations. This anisotropy allows lowering

gravitation field of the other
of the time symmetry from scalar to a second-
rank tensor.

The subsequent results on the subject will
be reported in a forthcoming paper.
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Errata

Vlokh R. Ukr.J.Phys.Opt. 5 (2004) 27-31.
Page 28. The correct form of Egs. (3)—(8) is

o /Gzy(gm)ﬁg( /GMJ (4/2)”_( fGMJ (auz)ﬁ_[ /GMJ @, G)
c, 21N < 2\ ¢ 16
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