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Abstract

We investigate the properties of intensity distribution of the two optical signals, which are
shifted and modulated by a plane wave and correspond to the generalized fractional Fourier
transform (FFT). The results of analytic and numerical calculations show the possibilities
for designing new systems for the processing of information. As an example, the correlator
based on the generalized FFT is considered. The domains of the generalized FFT in the
practicable optical systems are obtained and analyzed. A principal possibility for the
formation and recording of the interference pattern is demonstrated for the case when the
images of the FFT, starting from the general form of the cascade matrix, are optically

superimposed.
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1. Introduction

In last years, fractional Fourier transform (FFT)
has been widely used in investigations of the

existing systems for optical processing of

information, as well as in the design of new
such systems. By definition, FFT of an optical
signal f(x) is written in the form of integral

transform [1-3]

u (=3 [r@]=1rG)K xar, (1)

where
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C, is the constant phase factor, 3" the

2

FFT operator, ¢ = px/2, and p the FFT-order
parameter. At p =1, a usual Fourier transform

(FT) takes place. In the study [4], we have
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introduced the conjugate FFT

Up(x)zﬁp [F(kx/do)] It is easy to see that

the action of the operator 3’ on the Fourier
image of a signal yields in the conjugate
fractional image.

The FFT methodology is closely related to
the coordinate-frequency distribution (CFD)
method. Usually, a Wigner distribution function
is used in investigations of the FFT properties
[5]. It has been shown that the rotation of the
input signal on the middle conjugate coordinates
corresponds to the FFT. The alternative method
for the analytic description of optical signal
properties in the FFT domain is based on the
CFD of signals [6-7]. In particular, it is known
that the
informational

input signal rotation on the

diagram of the difference
conjugate coordinates takes place proportionally

to the FFT parameter p. The FFT image

reconstruction is caused by action of the inverse
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FT operator 5™ on the FFT distribution.
Both the methods stipulate a use of the
rotation matrix T¢ :[t,-,-]’ corresponding to the

linear transform of the conjugate coordinates
(x;;e,) of the input signal distribution. The

coefficients of this matrix ¢ are limited values,
ij

since they are expressed through trigonometric
functions sing and cosg . This fact essentially

restricts the possibility for description of optical
systems by the FFT methods. In particular, the
distances between the elements of the optical
system within such the approach can acquire a
restricted series of values only, ie. the
superposition of two signals takes place in a
restricted domain.

In the overwhelming majority of optical
information processing systems, a case of two
shifted optical signals is considered. The
superposition in these systems occurs in the
Fourier plane only. The FFT methodology
makes it possible to investigate a signal
superposition in the FFT domain or a fractional
correlation. The first papers on the subject [5-6]
have been devoted to the fractional correlation
definition and the substantiation of its
theoretical basis. The main deficiency of the
existing joint transform correlator (JTC) lies in
that the registration and investigation of the
images concerns only to the Fourier plane.
Another

difficulty of the interference pattern registration

deficiency is associated with a
in the linear range. It leads to decreasing the
signal/noise ratio and reducing the identification
level.

In the study [7], the correlator based on the
FFT has been proposed. The two concepts,
those of the JTC and the FFT, have been
combined together. Further development of the
fractional correlator has been described in [8],
where the case of two shifted signals (one of
which is modulated by a plane wave o) is

considered. The principal scheme of the

fractional correlator introduced in [9] is shown
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in Fig. 1.
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Fig. 1. Principal scheme of the fractional
correlator.

The signals f(x) and A(x) are transformed
in the system by the FFT of different orders p,
and p,. Then the signals are superimposed,
with further creating the interference pattern.
After performing the FFT of the p, ’th order and
the usual FT, we can register the correlation
function of the input signals. It is necessary to
point out that, at p, = p, = p,, we obtain the
known JTC [10]. Note that the general condition
linking the FFT orders at the input and output of
the optical system is found in [7,8]:

1 1 1

‘[an(,iﬁ1 - tan¢2 i tan(,iﬁ3 e

)

The ABCD-matrix formalism, together with
the FFT, has been considered in [11]. In frame
of this formalism, the determinant of the matrix

A B
{ j is equal to unity, and three of four
C D

terms determine the image-forming conditions.
An imperfection of such the approach is that this
mechanism does not take into account the
optical constants determining the distances
between the elements of the optical system. The
application of the approach to practicable
optical systems should refer to a symmetric case
only, when the distances in front of and behind
of the lens are equal to each other.

It is important to increase the level of
image protection and identification, while using
the generalized FFT. Therefore, the subject of
this paper is the investigation of general
conditions of image forming. In particular, a use

125



Yu.M.Kozlovskii

of a general matrix A=[a_| with the elements
)

equal to arbitrary values is proposed. Such the
approach extends essentially the scope of the
systems for optical processing of information
that utilize the FFT methodology. The rotation
matrix 7, would then represent a particular case

of the general matrix A.

As a result, a possibility appears for the
construction of new devices for the optical
information processing. In particular, this may
be a correlator based on the FFT.

The plane of signal registration in the joint
FFT domain at the fixed value of p, can be

situated at arbitrary distance from the lens. The
fact that this plane does not coincide with the
focal plane essentially increases a dynamical
range of intensities of the superimposed images.
This allows one to register more exactly the
spectrum of input signals on a sensitive
material.

2. Images of the generalized FFT

For investigation of the FFT properties, the CFD
may be used [3]. By definition, let us choose the
base functionals in the form of ambiguity

function A4, (x,;®,). As shown in [3], the FFT
distribution A4,,.(x,;®,) can be expressed in

the following manner:

Aww* (xo;a)o) = (4)
=4 (a x +a w;a X +a o),
gg* " 1170 1207 2170 220

where the linear transform of the conjugate

coordinates (x,;®,) of the input signal
distribution is described by the matrix A,
d
a -—La
11 k 12

4=lal= . (5)

—a a

21 22

0
The determinant of this matrix is equal to
unity. The advantage of the CFD method seen
after inspecting formula (4) is that the operator

1

5! reconstructs the FFT image:
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lu, (=34 (0;0,)]=

d (6)

1
— IA ) (—¢al,a)ﬂ;azzwojexp(ia)ox)dwo.
277 7 k=
It is easy to see that the two terms a;, and
ay determine the image-forming conditions.
With formula (4), we obtain the relation for the
light intensity distribution formed in the FFT

plane:
1
()= x
27ra12
,
. kay, kxx,
X x,)exp| i—=—x," |exp| — dx
[7@) p{ o J p( doan] 1

This intensity distribution can be detected
experimentally. According to the definition (4),
we have the generalized kernel of the FFT in the

form of
KX +3’] ay
K = R A B 73
¢(x,y) C¢ exp( i 2, a X
3
xexp| i oy .
dyaa,

Comparing the FFT kernel (2) with the
generalized one given by (8), we introduce the
two  coefficients that characterize the
generalized kernel. First of them is the

“effective” angle o of the rotation,

a,
tan @, = ai’ )
2

which is defined by the equation
m=a,/[sing,, . (10)

It determines the rotation angle of the
generalized FFT with respect to the FFT. The
second coefficient is the scale factor that shows
a scaling of the generalized FFT. Thus, we can
conclude that the mentioned parameters relate
the generalized and the usual FFTs.

The intensity distribution for the conjugate
image [3] is as follows:

1

|U" (x)|2 - 2zay, )

. ka, kxx,
- d
jf(x] )exp(z 2 X, Jexp[ da X,

LD

X
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Notice that the image-forming conditions in
this case are determined by the two other
components of the matrix A4 and the

corresponding conjugate coefficients are

CON a
tan @ g =—1 )
a
21
(12)
coN _ a;,
m - =—"—"on
sing " EF

These coefficients relate the conjugate general
and the conjugate FFTs.

3. Signal superposition in the generalized
type of the FFT domain

General peculiarities of the signal superposition
in the FFT domain were considered in [12]
where the calculations were carried out for the
case of the rotation matrix T, =[t!_l_]. We

combine here the two concepts of the signal
superposition and the generalized FFT. By
means of such the approach, we can find new
regularities in the description of optical
information processing systems.

Let us consider a general case of two

(shifted and modulated by a plane wave) optical
signals f(x) and f (x):

g(x) = f (x+b)exp(io x) +

. (13)
+f,(x —b)exp(-iw x),

where b denotes the wvalue of shift,

2zsinf
o =

the spatial frequency, @ the angle

of the incident plane wave. By virtue of
linearity, the fractional Fourier image of the
input signal (13) may be written as

2 . 2
w (@) =lu (b)) +

(14)

. 2 - .
v (b)) + (o),

where “p(x;b""l) and vp(x;b,a)]) are fractional

Fourier images of the shifted and the modulated
signals. of the intensity
distribution of the FFT diffraction pattern, based
on formulae (9), (13) and (14), lead to

The calculations
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w ()=

_ &1 .
=33 [Aflfl*(alza)o,aﬂa)o) X

X exp(i[azza)ob +a oo DI+

+§’][A (a w;a_o)x (15)

LA 12707 220

X exp(—i[azza)ob +a, oo DI+

&-1 .

+3 [Af]fz*(alzwo +2b; P~ 20, )]+
&-1 .

+3 [Af] o (alza)o - 2b,a22a)0 +20 )]

The two first terms in (15) form the FFT
image of the two shifted signals:

2
u (b0 =l (x+8,, ), (16)

2
|vp(x;b,a)])|2:‘vp(x—BFFT> . 17

Accordingly, the third and fourth terms in

Eq.(15) form the interference term of the
generalized FFT intensity distribution,

ip(x;b,a)])=up(x;b,a)1)v;(x;b,a)l) a8
+ (”,, (x;0,0, )V,, (x;0,)),
where
u, (b, ) (x3b,0,) = exp {20t}
u (54 By W (x Bryy)-

Making use of the results [15], we get the

(19)

general formula describing the generalized FFT
of the two shifted and modulated signals:

| w x)[= ‘up (x+ B¢)exp(iQ X)+

’ (20)

2

v (x— B¢ ) exp(—zQ¢x)

>

Relation (20) is equivalent to the form of
the input signal (13). The generalized shifting
parameter B, and the modulation frequency

Q of the generalized FFT image are

FFT

determined by the matrix equation:

d
( B j a,
FFT | _
= 2
Q FFT _ i ﬂ

_Tog,
k2 b

[0)1} 1)
a

d a 22
0 12

In this case the condition of superposition
of the optical images takes the form
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d
B _=ba_-w-"a_ =0. (22)
FFT 22 1 k 12
The modulation frequency
1-a
Q =wa_ - bi( ») appears to be

maximal under this condition. The input images
superimpose at the point that corresponds to the

angle ¢ -

4. General peculiarities of generalized
FFT realization in optical systems

The registration of the two optically
superimposed images in the FFT domain is
achieved due to illumination with the two
mutually coherent beams having their plane
wave fronts aligned at the fixed angle one to the
other.

The functional scheme of the optical cor-
relator consists of the two parts: the system for
the interference pattern registration (Fig.2,(1))
and the FFT block (Fig.2,(2)).

The system for the interference pattern
registration (Fig.2, (1)) consists of the following
elements: the illumination system; the input
image, Image I; the reference image, Image 2;
and the optical system of the FFT.

The illumination system forms the two
reference waves and consists of the first pair of
two identical lenses, Lens I and Lens 2, with
their focal distances equal to F, and the second
pair of the identical lenses, Lens 3 and Lens 4,
with the focal distances F>. The distance
between the two pairs of lenses is equal to
F+F,. The intervals between the pairs of lenses
(Lens 1, Lens 2 and Lens 3, Lens 4) are covered
by the opaque screens. Since the lenses Lens I
and Lens 2 are displaced by the distance L;, and
the lenses Lens 3 and Lens 4 by the distance L,
then the shift of the optical axes of Lens I, Lens
3 and Lens 2, Lens 4 by the distance
A=(L-L)/2 is achieved along the direction of

propagation of the plane waves.
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Fig. 2. Scheme of the JFC.

Due to this shift of the optical axes of the
pair lenses, the two reference plane waves are
formed at the output of the illumination system.
The waves propagate symmetrically to the axis
of the optical correlator at the angle defined by
sin@ =A/F,. Thus, the two
reference plane waves 4, (x)= 4, exp(ik sin6x)

and 4, (x)=A,exp(—iksinfx) are formed in

symmetrical

the illumination system, with the fixed angle 4,
where 4, is a constant phase factor.

This illumination system has a peculiarity
such that the sign of the angle & may be
changed. Under the condition L;>L,, the two
converging reference plane waves are formed at
the output. The waves are characterized by the
0>0. When L<L, the

reference plane waves are formed, characterized

angle divergent
by the angle 8 <0. When the reference plane
waves propagate in the same plane, the input
image, i.e. Image 2, is displaced. The image is

described by the function of amplitude
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transmission f,(x,y) and is illuminated by the
reference plane wave Al(x). The reference

image, Image 1, described by the amplitude

transmission function f, (x, y), is illuminated

by the other reference plane wave 4, (x) As a

result, the optical signal is formed at the output
of the optical correlator system (see (13)):
SGp) = f(x+by) exp(iQrefx) N
(23)
f2 (x—b,y)exp (—imex),

where b 1s the value of the relative cross
shifting of the /mages 1, 2, and Q,  =ksin®

the spatial frequency of the reference wave
determined by the angle 6. The FFT optical
system of the input signal (23) consists of Lens
5, or Lens 5 and Lens 6 with the focal distance
F disposed at the distance d =D, /F along

the optical axis. The plane of Lens 5 is displaced
by d =D /F from the plane of the input and

reference images (/mages 1 and 2). The
interference pattern of the FFT signal (23) is
formed at the distance d, =D, /F behind the

Lens 6 in the output plane.

The important novelty of such the
correlator consists in the fact that the
generalized FFT is optically realized with the
aid of one or two optical stages and at the
arbitrary distances d, and d, in the output plane.

The main difference of this scheme from

the others is that the formation of the high-
visibility pattern with the spatial frequency Q
FFT

takes place in the generalized FFT domain,
where the spatial frequency of the interference
pattern is defined by

Q
Q -7, (24)

a
22

If the “effective” angle of rotation ¢ is
EF

used, then the theoretical restriction |a |<1 of
ij
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such the transformation imposed on the

geometrical parameter of the stage is removed.
The advantage of the suggested scheme of

correlator based on the generalized FFT consists

in the possibility of realization of “effective”

rotation angle ¢ values at different distances
EF

d, and d,. This means that one can form the
interference pattern with the given spatial

frequency Q0  at the recording stage.
FFT

Taking into account that the matrix
coefficients a, and a,, are determined by
different relations and each of these coefficients
can be both positive and negative, we are able to
realize four different domains of the generalized

FFT input images.
5. Domains of generalized FFT realization
in the optical stage with one lens

tnrpe fene (it plune

\:/ \\ \

FER

2F F Lol i3

EEE)

AR [ TR »

Fig. 3. Scheme of the generalized FFT
realization in optical stage.

In order to investigate the approach in a
more detail, let us consider different domains of
the generalized FFT. For this purpose we
elucidate the physical meaning of the invariant
parameters a;. Fig.3 illustrates a general scheme
for realization of the generalized FFT in the
optical stage. The matrix of this stage is [13-14]

d
1-d —-—=(d +d —dd)
1 k 1 2 12 (25)
[ i I—d
d 2

0
The invariant parameters are given by the
relations

a,=d(1-d)+d,, a,, =1-d,  (26)
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The matrix (25) for the FFT takes the
following form:

d |
cos @ —fsm 7
M, = i . (27)
— cos
J 4

0
This matrix allows one to realize only a
(d,=d,=d), with the
distances restricted by 2F. Due to the form of

symmetric case

the generalized matrix (5), a non-symmetric
case (d, #d,) can be considered for the

generalized FFT. Superposition of the input
signals is realized for the arbitrary distances
both before and behind the lens.

Let us describe a methodology for the stage
parameter  calculations at the  optical
superposition of the input images. For the given

optical stage, the elements a,, and a,, of matrix

(5) (i.e., the invariant parameters of such the
should be

“effective” rotation angle ¢ at the generalized
EF

stage) calculated, where the

FFT is defined from (9). The expediency of
using the “effective” rotation angle is caused by

the fact that the rotation matrix T =7 | cannot
¢ J

be realized in optical stage. Knowing the angle

@ , one can calculate the value of the relative
EF

distance d, from the input plane and the
corresponding value of the relative distance d,

to the output plane of the optical stage.

The signs of the invariant coefficients
determine the domain of the FFT realization.
Let us consider a ”motion” of the images on the
informational diagram. Each domain (see Fig.4)
has the two boundary points. The FFT domain is
placed between these points. One can see that
any point on the informational diagram would
have a certain corresponding construction of the
optical stage, where the generalized FFT is
realized. The first domain of the generalized
FFT image formation corresponds to the values
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of the FFT parameter in the range of 0 < p <1
(Fig. 4a). The extreme cases of p=0 (the
coordinate plane) and p=1 (the frequency

plane) correspond to the usual FT.

The FFT domain is placed between these
planes and the FFT parameter in this domain
changes continuously from 0 to 1. Such the
domain is described by the matrix (5), under the
conditions when the invariant parameters are

a, >0 and a,, >0. The distance d, changes

from a zero up to the focal distance of the lens
F, whereas d, may be arbitrary. The boundary

points of this domain are p=1 and p=2. The
point p =1 is peculiar, i.e. it corresponds to the
usual FT (a,, =0). At the fixed position of the

output plane, the input plane can be placed
differently, with the corresponding distances

determined by the condition a,, >0.
At the point p = 2, the inverse image of the

input signal is formed, whereas the conjugate
FFT is formed in the domain between the
extreme points p=1 and p=2. Then the

distance d2 would change from F to the infinity

and d, > d, / (d, —1). It is important to note that
using of matrix (5) leads to scaling the inverse

image at the point p=2 , the effect being

-m 0

determined by the matrix { J This
_1
4

matrix is unitary if the 7, matrix is used. The

peculiarities on the informational diagram are
caused by the lack of the transform to the points
p =3 and p =4(0), since d,<0 in this case. On
the other hand, there exists a third domain of the
generalized FFT, describing the inverse image
of the input signal. In this case d, is larger than

Fand d, <d,/(d, -1).

Let us consider the optical system with the
parameters a =1, b =2, d =250.
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Domain 1:
d =25, d, =05, a,=1.75 a,=025.
The parameter p changes continuously

from O to 1 for the region between the points
p=0 and p=1 and it is therefore possible to

record a high-contrast interference pattern at
different values of the “effective” rotation angle
@ Owing to use of the generalized FFT

methodology, we may also record the images on
the different scales at the arbitrary values of the
spatial frequency. So, a large number of
modifications may exist for the realization of
optical correlator in this system.

LA 3 b
.?i:- 1\ I ool 2 / : 1o
Y |
! !
3_- c) ; dy

Fig. 4. Domains of the generalized FFT
realization.

Fig. 5(I) illustrates the light intensity
distribution for the generalized FFT realization
at the superposition point corresponding to
Domain 1 (Fig. 4a). The images in this case are
superimposed at the value of the “effective”

rotation angle ¢ =74". In such the system, the

following intensity distribution is formed in the
output plane of the generalized FFT images:

2 cos’ (me). (28)

This relation reveals the two superimposed

w )| =4

fractional images of the slits, which are modu-
lated by the high-contrast periodic interference
pattern with the 100% contrast ratio.

Domain 2:

d =15, d,=1, a,, =—0.5.

If we change the distances between the

a, =1,

Ukr. J. Phys. Opt. V4. Na3

optical elements in the system (Fig.3), the

parameter a,, changes its sign and the

superposition of the input signals takes place in

the Domain 2 (1< p<2; a >0 and a <0,
12 22

see Fig. 4b) of the generalized FFT realization.
This system corresponds to the conjugate
generalized FFT and the corresponding intensity
distribution is shown in Fig. 5(II).

The main feature of this stage scheme is
that the optical superposition of the generalized
FFT images occurs under illumination of the
input images (/mage 1 and Image 2) by the
divergent (6 <0) reference waves. The other
is that the
corresponding input plane exists at the condition

feature of the latter scheme
a;p=0 for the output plane. Then the output
plane may be used as an image plane and the
inverse image with the scale factor m >1 may
be formed in this plane. The boundary value of
the parameter p =2 corresponds to the mutual

position of the coordinate planes on the
informational diagram.

1c

03

Jag

Fig. 5. Intehsity distribution of the generalized
FFT images at the superposition point in optical
stage.
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The interference pattern of the optically
superimposed generalized FFT images is also
registered in the output plane:

2
|Up (x,y)|2 =4 US) (x,y)‘ cos’ (QFFTx). (29)

When compare with Domain 1, the

superimposed images of the generalized FFT are
less contrast and scaled-up (m >1).

Domain 3:

a’l =2, a’1 =3, a =-1, a_ =-2.

12 22
With the above values of the parameters of
optical system, the inverse image of the
generalized FFT is formed, which corresponds
to Domain 3 (see Fig. 4c), where the values of

the parameters are 2<p<3 (a,<0 and

a,, <0). Formation of the inverse image with
the value of the scale factor m =1 corresponds
to the case of p=2.

The optical superposition of the inverse
images of generalized FFT takes place at the
sin@ = 0.06 for
reference waves and the “effective” rotation

value of the convergent

angle ¢, =27".

The corresponding intensity distribution of
the inverse image of generalized FFT is shown
in Fig. S(III).

Domain 4: a,, <0; a,, >0..

This domain (see Fig. 4d) cannot be
realized in optical stage, because the distance
d, becomes negative (d, <0) and lacks a

physical meaning.

6. Domains of generalized FFT realization
in the double optical stage

Let us analyze the system based on a double-
stage optical system. The general scheme of the
generalized FFT realization for this case is
shown in Fig.6.

We point out that the additional parameter
d, appears for this system, improving a safety

of devices for the information protection. Let us
write the expression for the double-stage matrix:

MDfCAS =M x ML, x M, (30)

132

1 0 1 -F\k
where M = , M =
L2 Flk 1 5P 0 1

and F is the focal distance. The invariant

parameters may be calculated with the relations
a, =d)(1=a)+(1-d,)[d(1-d)+d}; 31)
@y :(1_d2)(l_dF)_d2‘

A characteristic feature of the double stage
is that only this system allows realizing the FFT
by the
generalized FFT realization scheme in the

definition. Let us consider the

double-stage system, when the parameters are
a=1,b=3and F =100.

Domain 1:
d =45, d,=25, d,=3,
a, =0.25, a, =0.5.

This scheme corresponds to F=0+F+0,
where F is the focal distance.

The superposition points changing from
zero up to F correspond to the generalized FFT
domain. The numerical results for the two-slit
superposition and the rotation angle ¢ =27" are

shown in Fig. 7(I). They describe Domain 1,
where the FFT image is formed.

Domain 2:

d=02 d =135 d_ =35,

a12=0.03, a_ =-047.

22
For this scheme we consider the stage
construction 4F=F+2F+F, when the generalized
FFT changes in the domain 4F=0..F+2F+0..F. In
this case the superposition occurs at the value of

the “effective” rotation angle ¢ =4"(see Fig.

7(I1)). In Domain 2 (see Fig.4b), the generalized
conjugate image is formed.

- e . 1 O prlone
I fovge 4 ST, fensd fons 2 o X
LA

o, o, =3 o,

Fig 6. The FFT realization scheme in the double
optical stage.
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Domain 3:
d =53, d =125 d_ =4,
1 2 F

a =-24, a_=0.5.
2

1
Here the FFT domain is 4F or
4F=F.2F+F..2F. The intensity distribution of

the superimposed slits for the “effective”

rotation angle ¢ =78 (see Fig. 7(1I1)) takes
place in the domain 2 < p <3 (see Fig.4c). In

this domain the inverse image is formed.
Domain 4:
d =175 d =25 d =3
1 2 F

a =-125, a_=0.5.
22

12

Tis a0 05 0o 05 10 15
I

ey’ i“\ i 'i

40 @5 00 05 10 10 Gf 05 05 10
X ! !
; 8

Fig. 7. Intensity distribution of the generalized

FFT images at the superposition point in the
double optical stage.
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With the above parameters, the scheme is
7F=2F+3F+2F and the fractional domain is
2F..+3F+2F. Here the superposition occurs for
the “effective” rotation angle ¢ =65  (see Fig.
7(IV)) and in the domain of 3 < p <4(0) (see

Fig. 4d), where the generalized conjugate
inverse FFT image is formed.

7. Conclusions

The main purpose of this paper has been to
show the advantages and principal possibilities
of the

processing, which appear owing to use of the

systems for optical information

generalized matrix A, Based on this matrix,

the generalized FFT is constructed. The main
advantage of this approach consists in the
possibility for the matrix coefficients to acquire
arbitrary values. The parameters of the optical
systems are calculated, using the invariant
parameters a , which are the elements of the

matrix A; . Utilization of the generalized FFT

has allowed us to improve the existing
information processing systems and construct
new systems of this type. In particular, the
example for the correlator based on the

generalized FFT clearly shows this possibility.
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