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Abstract

In the present paper the approach for solving the problem of 3D stress tensor field
tomography is suggested. It is shown that the stress tensor field tomography can be based
on the imaging polarimetry. The problem can be divided into three separate stages. In case
of 2D stress distribution, one can easy obtain experimentally the distribution of the
difference of stress tensor components (o;-03) and the shear component og. In case of 3D
stress distribution, our approach is based on searching equi-stressed surfaces (if such the
surfaces are non-closed) with the imaging polarimetry methods and using the rotation of
sample in the index-matching liquid. Reconstruction of these surfaces allows one to
reconstruct the 3D stress distribution in the sample. When the equi-stressed surfaces are
closed, we suggest the cell model of the stressed medium and the approach based on the
Jones matrices. We show that solving the system of 6N nonlinear equations of (V)" power
with 6N variables (N being the number of cells, into which the stressed sample is divided)
requires sample probing by a broad beam in 2(N)'” different directions.
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Introduction

A need in a non-destructive reconstruction of
3D stress tensor field follows from such
foreground directions as energy and materials
saving, which depend on the quality and
durability of constructions and constructive
elements. It has lead to development of the
methods for three-dimensional (3D) integrated
[1,2]. These methods
their  efficiency in  the
determination of 3D state for the
samples with a high geometrical symmetry [2].

photoelasticity have
demonstrated

stressed

However, they cannot be applied for analyzing
the models with the most general stressed state,
as well as the semiconductor and dielectric
elements. From the other hand, efficient analysis
of 3D tensor stress fields could permit to design
the constructions and constructive elements
possessing a highest possible homogeneity,
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quality and mechanical durability, as well as
minimal stresses and inhomogeneities. As for
the elements of optoelectronics, this problem
concerns first of all the growth of semiconductor
and dielectric crystals, the lattice-matched
semiconducting multi-layer structures [3], and
the implanted layers, since they are known to
possess in most cases the residual stresses and

non-compatible deformations.

Recently a few theoretical approaches for

solving the problems of the integrated
photoelasticity in case of asymmetric objects
have been proposed. The principal idea of these
approaches consists in consideration of the
reconstruction of 3D stresses from the point of
view of optical tensor field tomography [4,5,6].
All of these approaches still remain to be only
purely theoretical suggestions, which need

further experimental verification. Unfortunately,
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it has not been done yet and, moreover, there are
no precise experimental tools that could
determine all the parameters necessary for the
calculations. Moreover, all these approaches
cannot be realized without some additional a
priori information about the stressed state, or
the numerical methods for solving the nonlinear
equation systems would always lead only to a
set of solutions otherwise.

A number of experimental techniques for
determining three parameters (a characteristic
retardation (2A),

secondary (y) characteristic directions), which

a primary (€) and a
are usually used in the integrated
photoelasticity, have been proposed [7,8]. All of
these methods show a low accuracy; they are
Thus, the
optical data obtained by these methods cannot

b

“slow” and so time-consuming
be used in the calculation algorithms as the
initial parameters for stress reconstruction.
Furthermore, one cannot obtain the data about
the local optical indicatrix orientation inside a
stressed body, when the optical indicatrix
rotation around the direction of light
propagation takes place.

In order to study the optical inhomogeneity,
polarimeters of different kinds are used at
present. Even if imaging polarimeters with a
CCD-camera receivers are employed, the known
approaches enable to obtain only a 2D stress
distribution, and only if we know in advance
that the stressed state is two-dimensional and the
rotation of indicatrix around the optical path
direction is absent. Concerning the stressed
states of semiconductor objects, as far as we
know, the imaging polarimetry has not yet been
applied to the stress field reconstruction.

The present paper is devoted to search of
the ways for solving all these problems in the
case of 3D stress distribution in the initially
isotropic transparent media.

Problem conditions

Principles and instrumentation of the scalar field
optical tomography are now well developed [9].
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They are based on solving the problem of 3D
distribution of the scalar parameter, namely, the
absorption of light. Scalar field X-ray and
acoustic tomography are widely applied, for
example, in medicine [10,11]. As scalars contain
only one component for each of the N cells, in
which the inhomogeneous medium is divided,
the problem of finding, e.g., the absorption
coefficient ay, can be solved by measuring the
integral absorption for different projections and
solving the corresponding equation system. It is
necessary to note that one can measure only one
integrated component for each projection and so
one should find only one component for each
unit cell.

The polar vector field mapping already
needs more complicated optical systems, which
should be based on the nonlinear optical effects.
For example, Y.Uesu suggested the SHG (se-
cond harmonic generation) microscope [12,13]
in order for obtaining a 2D distribution of spon-
taneous polarization. In the case of tensor field
tomography (we shall further consider a polar,
symmetric second-rank tensor of impermeability
coefficients Bj; at optical frequencies that descri-
bes the so-called optical indicatrix), each cell is
in general characterized by six components. The
tensor B is linearly coupled to the second-rank
polar stress tensor. But even in the case of
homogeneously stressed state, it is possible to
determine only three parameters of optical
indicatrix after the one-projection measure-
ments. If the incident beam is propagated along
the z-axis of the optical indicatrix, one can
usually determine polarimetrically the B,
component and the difference of components
(B11-B2;). If we use the interferometric methods,
it is possible to determine B,;; and B, compo-
nents separately (Bii=1/n2, with »n being the
refractive index). Moreover, such the measure-
ments are correct only if the orientation of opti-
cal indicatrix does not depend on z coordinate,
i.e. for a 2D distribution of inhomogeneity of
the B;’s. Then the measurements for the other
projections may allow to determine the three
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other parameters. It often leads to the situation
when the number of the unknown parameters
exceeds that of the nonlinear equations and the
equation system can be solved neither
analytically nor with a numerical methods.
Hence, the problem lies in determination of the
relation between the quantity of the projections
needed and the complexity of the stress

distribution.

Phenomenological approach

3D photoelastic specimens in general belong to
the class of spatially non-uniform birefringent
media. A typical property of such the media that
makes them difficult for studies is a rotation of
optical indicatrix around the light path direction.
When indeed so, one cannot obtain the informa-
tion about the local optical indicatrix orientation
inside the stressed body and, as a consequence,
the stresses inside the sample. Then it is only
possible to apply the computer simulations
which take into account the geometrical sym-
metry of the sample, the initial approximations
about the stress field and the integrated
polarimetric data.

This means that the following principal
problems arise in designing an optical
tomograph of stress tensor field:

- A necessity of possessing the additional
information about the stressed state;

- Difficulties of obtaining the data on the
local state of optical indicatrix, whenever
the principal axes of the overall optical
impermeability tensor rotate around the
direction of light propagation.

Case 1(the sample is occupied by non-closed
equi-stressed surfaces)
Let us assume that the sample under studies is

transparent for the radiation used in the
experiment and optically isotropic in its non-
stressed state (accounting for the initial optical
anisotropy can be done only after developing
the algorithm for initially optically isotropic
media). The position of each point inside the
sample can be described by the coordinates
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(x,y,z) of the Cartesian coordinate system asso-
ciated with the sample. If the additional infor-
mation is absent, one can take into account only
the obtained experimental data. Using the
unambiguous experimental data from the overall
2D image, obtained for the light propagation
through the sample in the chosen direction, one
can consider the data related only for those
elementary beams, for which a full extinction
between the crossed polarizers exists and the
mutual rotation of the crossed polarizers leads to
the unity light modulation depth. For all the
cells through which the elementary beam is
propagated and for which the mentioned
condition is satisfied, the equation for the
optical indicatrices can be written as

(B, + 7,0, + 7T,,0, + T,,0,)x" +

+(B, + 7,0, + 7,0, +7Z'120'3)y2 +

+(B, + 7,0, + 1,0, + 71,,0,)z" +

+2(7,, - 70,,)0,zy + 27y, - )05 2x +

+2(ry, - 7,,)0,xy =0 , (D)
where B; are

the optical impermeability

constants, 7; the piezooptic coefficients, o; the
(these
components could in general depend on the

components of the stress tensor
three coordinates); and they would have an
invariable orientation if the tensor o; along the
given direction is constant. As it follows from
the deformation-compatibility equation (the so-
called Saint-Venant equation),

(e,;l) - eﬁz))xixj =0 5 (2)

ij

(with efjl),esz) being the deformations of the

neighbouring (“contacting”) regions of the
continuous solid state) and Hook’s low,

€; = Sg'/'klo-kl > 3)
i.e. the surfaces of equal stresses in the solid
state will be second-order surfaces. From the
other hand, when the volume forces are absent,
one can note on the basis of the elastostatics
equation,

divo, =0, 4

that these surfaces should be non-closed, i.e.
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they could be neither spherical nor ellipsoidal.
Such the non-closed second-order surfaces
always contain straight generating lines. Thus,
in the solid state which obeys the conditions
mentioned above there always exist equi-
stressed lines, the lines along which either
stresses or the parameters of optical indicatrix
should be constant.

If the wave vector normal coincides with
the z direction of the coordinate system associ-
ated with the sample, it follows from the optical
indicatrix equation that the angle of optical
indicatrix orientation can be written for all the
cells, through which the elementary beam is
propagated, as

tan2&, = 204

0, =0,

=const(z). (5)

The latter relation will be useful for the
next calculations. After measuring the optical
retardation in the z direction, it is easy to
calculate the stress tensor component difference
(01-0») and the shear component oz by solving
the equation system

(0, -0, )=2An, cos(2&,)/ ) (1), - 7;,),
1 (6)

0-625(0-1 -0, Jtan(2&;).
Besides, the off-diagonal components of
which
corresponds to the light propagation along such

the integrated Jones matrix 7
the direction, should be equal to zero. This
could be quite easy checked experimentally’.
The oft-diagonal components of T}, are zero in
case if the off-diagonal components of all the
elementary Jones matrixes f;, corresponding to
the local elementary cells of this line, are equal
to zero. Moreover, all the components of the
local Jones matrixes #; will be the same for such
the equi-stressed line and their product gives the
components of the integrated Jones matrix 7} .
Thus, the first step in the stress tensor field
reconstruction lies in searching the equi-stressed
surfaces, by means of measuring the extinction

condition for different projections and rotating
the sample in the index-matching liquid. The de-
termined values of (0;-03) and o;; allow us to
reconstruct o;, o> and o7, by the combined
Muskhilishvili method [14]. Then the determi-
ned shapes of the equi-stressed surfaces enable
reconstructing the 3D stress field distribution.

For instance, in case of a 2D stress distribu-
tion, there are no problems with determining the
components o; and there is no need in dividing
the sample into the elementary cells and
calculating the Jones matrices. After measuring
the optical indicatrix orientation angle and the
optical retardation for the direction of constant
stresses, it is easy to reconstruct the distribution
of (01-03) and 5. Our results obtained by the
imaging polarimetry technique for a glass disk
loaded along the diameter are presented in
Figure 1 and 2 as an example.

Thus, a 2D stress field can be reproduced
by optical tomography methods, without any
extra problems, mechanical models or initial
approximations. [15].

Case 2 (the sample is occupied by closed
equi-stressed surfaces)

The actions at this stage need a development of
hybrid numerical-experimental methods for
calculating a 3D stress field on the basis of maps
for the optical anisotropy parameters obtained
for different projections. The method of hybrid
numerical-experimental reconstruction of a
stress field consists in the following:

a) Let us choose a sample of cubic shape
(divided into N cells, in order to simplify the
presentation). Upon transmission of light along
the directions coinciding with the cube edges,
each elementary ray will transmit through (N)"”
cells, while the whole beam - through (N) cells.

The Jones matrix 7j; that describes the light

transmission, along the chosen direction,

through the whole sample, can be obtained by
Jones

multiplying the local matrixes

! For these beams, the full extinction between the crossed polarizers should exist and the mutual rotation of
the crossed polarizers should lead to the unity light modulation depth. On the other hand, these beams should

coincide with equi-stressed lines.
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accounting for the separate elementary cells:

(N)I/fi

T,-,-=1T[f,~j,

where (N)"” denotes the number of cells. Three

components of each elementary Jones matrix #;

(6)

are nonlinearly expressed in terms of the
the
components and the off-diagonal component of

difference  between two  diagonal
the “transverse” optical impermeability tensor.
If a broad beam is transmitting in one direction,
one can obtain 3(N)*? 3 power
with 6N variables. It is therefore a necessary to

obtain the corresponding maps for 2(N)"?

equations of (N)

different directions. As a result, a system of 6N
nonlinear equations with 6N variables would be
obtained. For example, in case of the sample
with a cubic shape divided by 8 elementary

4

cells, there is a need to provide the maps for 4
different directions, in case of 27 elementary
cells — for 6 direction, in case of 225 elementary
cubic cells — for 10 directions, and in case of
1000 elementary cells — for 20 directions. It is
interesting to note that for the cubic sample with
the
resolution of 1mm?® can be provided by 20 maps.

dimensions of 1x1x1cm’ the volume

Basing on the given shape of sample and
the necessity of filling up its whole volume by
the same elementary cells, one can choose the
shape of the elementary cells. It is interesting to
notice that the shape of such the elementary
the the

crystallographic elementary cells.

cells could be same as for

b) This stage consist in solving numerically
(e.g., with the iterative method) the system of

2

—=&— g (experiment)

2 amEm -

(6,-0,), 10" Pa

(o,- 0,) (calculations)

(o,- 5,) (experiment)

0,0
x/R

Fig.1. Stress distribution along a diameter of glass disk.

-0,5

0,5 1,0

Fig.2. Stress distribution along a chord of glass disk.
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the nonlinear equations

N
T(l)lj Ht(l)

Nl/}

(6N) H t(éN)

(7

using the initial approximations obtained at the
first stage and the corresponding data (the
integrated Jones matrices are calculated while
using the retardation &, the orientation of eigen-
polarizations € and the ellipticity of the eigen-
polarizations &) derived from the polarimetric
maps for different projections.

In general, each elementary Jones matrix #;
is coupled with the combination of six
components of Bj; tensor, namely with those
components that determine the parameters of
elliptical cross section of the optical indicatrix,
perpendicular to the given beam direction. For
example, the components of »n” elementary
Jones matrix are coupled to the components of
optical impermeability tensor of n” cell, written

in the proper coordinate system, as

" 1 n n n _jn
i Zzn_zn[ exp(Cs/d")+1; exp(Cssd") |,
s = 1 (O~ expl Ol |

n 1 n n n n
tlzzm[_l exp(Cs;'d")—1, exp(Cs,d )]’

. _Bi+B, A

) t—, 8
2= 5 (®)
i 2By,

(B _anz)iA,

L2
(B,

1
A=[(B -By,Y +(4BL) |,
c=
2n,
(ny being the refractive index and k, the wave
vector), while the latter tensor components are
coupled to the mechanical stress via the

relations
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n _ po n n n
B\ = B, + m,07, + 7,05, + T,033,
n _ po n n n
By, = B}, + m,0), + 0, + 7,05, )
n _ po
B, =B +(m,

As a result, after

— 7, )os,

solving the mentioned
equations we shall obtain the three differences
of the diagonal stress tensor components and the
three off-diagonal stress tensor components for
each of the MV cells.

Conclusion

In the present paper the approach for solving the
problem of 3D stress tensor field tomography is
suggested. It is shown that the stress tensor field
tomography can be based on the imaging polari-
metry. The problem can be divided into three se-
parate stages. When a 2D stress distribution is
dealt with, one can easy obtain experimentally
the distribution of the difference of stress tensor
components (o;-03) along with the shear com-
ponent oy In case of a 3D stress distribution,
our approach is based on searching for the equi-
stressed surfaces (if such the surfaces are non-
closed) by the imaging polarimetry methods and
further rotating the sample in the index-
matching liquid. A reconstruction of these
surfaces allows reconstructing the 3D stress
distribution in the sample. When the equi-
stressed surfaces are closed, we suggest the cell
model of the stressed medium and the approach
based on the Jones matrix technique. It is shown
that solving the system of 6N nonlinear equa-
tions of (N)"” power with 6N variables (N being
the number of cells, on which the stressed sam-
ple is divided) requires probing the sample by a
broad beam in 2(N)"” different directions.
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