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Abstract

In this review article, the attempt is made to give, in a brief form, a methodology of
studying a piezo-optical effect, beginning from the methods and basic relations for
obtaining the absolute piezo-optical coefficients on the basis of experimental data and
finishing with accounting for elastic deformation of sample and the rules for giving positive
signs to the axes of the right crystal-physical coordinate system. To make the picture
complete, the relations are also given for determination of the piezo-optical coefficients of
retardation and birefringence, since they are important in the applied aspects. The article is
dedicated mainly to the methods for deriving the working formulae. Considering a
restricted volume of the article, we do not touch upon the experimental methodology and its
peculiarities, with the only exception for the immersion-interferometric method, which is
described in a sufficient detail.

The complete relations (i.e., the relations accounting the elasticity effect) for determining
the absolute piezo-optical coefficients by means of interferometric methods are given in
table 2, while the relations needed for determining them from the optical indicatrix rotation
or the birefringence may be found in the text. The strict expressions for the piezo-optical
coefficients of birefringence and retardation, based on the determination of optical
polarization constants, are also given in the text. These relations and the appropriate
comments give a possibility to study comprehensively the piezo-optical effect in crystals of
all the symmetry classes (the remarks concerning the triclinic crystals see in Conclusion).
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Introduction

All the absolute piezo-optical coefficients can be
measured on the basis of changes in the
refractive indices under the action of mechanical
stress. The only acceptable method for that is
interferometry, though there is also some
information about using the prism method for
this purpose. However, nowaday utilization of
lasers might convince each investigator in that
the interferometry is much more convenient and
precise than the prism method. Therefore the
working formulae in this article are written for
the interferometric methods. These formulae are
given in table 2 for one-pass interferometers,
e.g. the Mach-Zender one. For the double-pass
interferometers, e.g. the Michaelson one, it is
necessary to multiply the r.h.s. of the relations
presented in table 2 by the factor “2”, since the
optical ray passes two times through the
investigated sample. In case when the Phisot
interferometer is dealt with, the relations of table
2 also need some corrections: the unity that
enters both the expressions like (#—1) or

(V2 / \/ﬁ -1) and the elastic term, should be

removed. The relations used to determine some
absolute piezo-optical coefficients on the basis
of the induced rotations of optical indicatrix, the
optical birefringence or the retardation, are also
important in the comprehensive studies of piezo-
optical effect in crystals.

1. Main ideas and terms of piezo—optics

Piezo-optical effect (POE) is the change in the

optical ~ characteristics  (refractive  index,
birefringence or retardation) of a solid under the
action of mechanical stresses.

Historically, the birefringence An induced
by mechanical stress ¢ has been discovered in
the isotropic bodies and cubic
(D.Brewster, 1815 and 1818 —see [1,2]):

An=C, o. (D)

This relation is called as the Brewster’s

crystals

law. The coefficient C is known under different
terms: the Brewster’s constant, the relative

piezo—optical coefficient, or the optical
coefficient of stress.

To describe the POE in anisotropic media
(crystals), F.Pockels [2] has suggested the tensor
relation

5Bl.j:72'l.jk10'k1; i, j, k=123, (2)

the correctness of which has been successfully
confirmed by the entire empiric experience of
that time. In formula (2), 8B;; denotes the change
in a specific component of the optical
impermeability tensor, referred to afterwards as
the tensor of polarization constants Bj (it
represents a material tensor of a rank two), oy
are the components of the fensor of mechanical
stresses (a field tensor of rank two), 7 the
components of the rank-four fensor of piezo—
(POCs). The

symmetry of tensors Bj and oy allows to write

optical  coefficients internal
formula (2) in the matrix form:

OB, =r,,0,, 3)
where the indices 1 and m mean, respectively,
the directions of light polarization and the
uniaxial compressing—tension, and they take the
values 1,2,3,...6. The coefficients 7, and 7
are called absolute piezo—optical coefficients.
The link between the coefficients 7, and 7 is
given by the following expressions [1]:
for m=1,2,3;

Ty =21 for m=45,06.

Tim = Tijpa

“)

Since the symmetric tensor of polarization
constants B; has six independent components
0B, 0B,
equations. Since, in its turn, the symmetric

..., 0Bg, formula (3) represents six

tensor of mechanical stresses o, has also six
independent components c;, G, ..., Gg, each of
the equations (3) has six terms 7y, G, . For

example,

OB, =70, + 7,0, + 730, + 7,0, +
+ 7,505 +7Tc06,

&)
OBy =740\ + 0y + 305 + Ty0 4 +

T 505+ g0
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That is, the general matrix of absolute
POCs 7, contains 36 independent non—zero
components 7, . Let us write this POC matrix
and give the definition of four typical groups of
the coefficients 7y, :

I I

7 T M3 M4 Ms e

Tim= | T31 72 733 © 4 s e

————————————————————— e (6)

111 v

The rows of this matrix correspond to the
first index of 7z, and the change in the
corresponding polarization constants B; (i= 1, 2,
..., 6), while the columns correspond to the
second index and the corresponding components
of the mechanical stress tensor o, (m = 1,2,...6).
The three first rows of the matrix (6) correspond
to the components dB; with 7 = 1, 2, 3, which
describe the changes in the principal refractive

indices 7; (so far as B, =1/n}), and the three

last lines correspond to the components 0B;, 6Bs,
0Bs, which describe the rotation of optical
indicatrix around the principal axes of the latter
X1, X,, X3, respectively (this is proved in the
chapter 2.2, see, e.g., formula (30)). The first
three columns in (6) correspond to the
components o, o, 03, which represent the
mechanical stresses of compressing (or tension),
they are also called normal stresses. The three
in (6)

components G4, Gs, Gs, Which are called the

last columns correspond to the
mechanical stresses of shift (tangential stresses)
in the planes perpendicular to the axes X;, X5,
X5, respectively. After these remarks, we
introduce the definitions of different POC
groups in formula (6) [3,4]:

group I — 9 principal POCs iy, (£ m =1, 2,
3), which describe the change in the principal
refractive indices under the action of normal

(compression—tension) mechanical stresses Gy,;

Ukr. J. Phys. Opt. V4. Nul

group Il — we call these 9 coefficients 7,
(f=1,2,3,m=4,5, 6) as the shift coefficients,
because they describe the changes in the
principal n; under the action of shift components
of the tensor 6

group III — these are 9 turning my, (F=4, 5,
6, m =1, 2, 3), which describe the rotations of
optical indicatrix around the axes X;, X,, Xj
under the action of normal components of &,,;

group 1V — these are turning—shift POCs 7y,
(4, m=4,5, 6), and they describe the rotations of
optical indicatrix around the axes X, X;, Xj
under the action of shift components of G,

Let us also notice that (6) is a matrix of the
most general form and it defines the POE in the
crystals of triclinic symmetry. The presence of
any symmetry elements in crystals of higher
symmetry causes some components of the
matrix (6) to become zero or dependent on each
other. That simplifies essentially the POC
matrices. Their appearance for the all symmetry
groups is cited in the majority of authoritative
monographs on crystal physics, for example, in
[1,5]. Besides, the
coefficients (see also [1,5]) are also necessary, in

matrices of elastic
order to take into account the elasticity in the
studies of POE.

Below we write out the helpful relation,
which allows to define the wvalue of the
components and the appearance of mechanical

stress tensor o in the principal coordinate
system X;, X, Xj, if the vector ; of a uniaxial
pressure (with the module o) is arbitrarily
oriented with respect to X;, X,, X3 and is given
by the directional cosines a, b, ¢ i.e.,

; = ;(a,b,c) . Then we have

a’ ab ac
6,= | ab b be | .o
ac bc c
or, in a more compact form,

O :[0-1’0-2’0-3104’0-5’06]:
@)

2 2 2
=[a ,b°,c ,bc,ac,ab]xd.
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It is clear from the relation (7) that
o,=a’-0; 0,=b-0; o, =bc-o, etc.

Particular example for using the relation
(7). If a sample is oriented under the angle 45°
with respect to the axes X; and X, (fig. 1) and
the pressure with the value o is applied along
the diagonal between X; and X, (this direction is

designated in fig. 6), then the directional cosines

of the pressure vector p = p(a, b, ¢) are as

follows: a = b = cos45° = \/5/2, ¢ = ¢c0s90°= 0.
Inserting these values into (7), we obtain:

o, =[1/2,1/2,0,0,0,1/2]xo. (8)

In other words, the two normal components
o) = 6> = 6/2 and the shift component 65 = 6/2
exist in the coordinate system X;, X;, X;. We
shall use below the expression (7) to establish
the relations for the definition of the shift,
turning and the shift-turning POCs.

V7

| 6

2 PT | 6

Fig.1. Action of uniaxial pressing—tension on a
sample with 45° — orientation with respect to the
axes X4, Xa.

In conclusion of this chapter, we write
down the equations for the “free” (non—
perturbed by the external mechanical influence)
and the perturbed optical indicatrices in the
coordinate system X;, X, X;. For the “free”

indicatrix we get

Bx{ +B,x; +Byx; =1 or
2 2 2
X X X
R el B )
n ny Ny

where B, =1/n}

polarization constants, »; the principal refractive

are the principal optical

indices (the half-axis lengths of the optical

indicatrix), and x; the coordinates.

Under the action of the stress oGy, the
principal components B; change their values by
OB; (=1, 2, 3) and, moreover, the off—diagonal
components of the polarization constant tensor
OB; (i = 4, 5, 6) appear, the latter defining the
angles of inclination of the optical indicatrix
with respect to the principal axes X;, X5, X5 (see
more details in chapter 2.2). Then we say that
the optical indicatrix (the characteristic surface
of the optical polarization constant tensor) is
perturbed, and the corresponding equation looks
as

(B, + 0B,)x} + (B, + 6B,)x; +
+(B; + 0B;)X: +20B,x,x; + (10)
+20Bsx, X5 +20Bx,x, =1.

The expressions for &B; for any
experimental geometry may be derived on the
basis of (3) or (5), after taking into account the
non-zero components of the o, tensor defined
by formula (7).

We denote the directions of crystal-physical
axes Xj, Xy, X3 and the corresponding directions
of pressure (m), the light propagation (k) and the
polarization (7) as 1, 2, 3; the diagonal directions
between the axes X,, X35 Xi, X35 Xy, X2 as 4, 5,
6, respectively, and the directions perpendicular
to them (one of the projections of the direction
on the corresponding axes would be negative) as
4, 5, 6. Such the notation system for the
directions is related to the Miller’s notations
through 1=[100], 2=[010], 3=[001], 4=[011],
4=[011]=[011], 5=[101], 5=[101]=[101 ],
6=[110], 6=[110]=[11 0]. The author of [1]
also avoids the notations of the diagonal
directions by the Miller indices. The notations
used in this article are more laconic and,
furthermore, they carry some elements of
physical meaning. For example, the notation
m=6 indicates that the component =0 (more
exactly, c¢=c/2 — see formula (8)), and it
initiates non-zero POCs 7; the notation =6
indicates that the non-zero coefficients 7, are
initiated, etc.

Ukr. J. Phys. Opt. V4. Nul
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2. Absolute POCs: the relations for
determination of all the POCs from the
changes in the refractive indices and the
rotation of optical indicatrix

2.1. Determination of the principal POCs
with taking elasticity into account

The correct account for the elasticity effect is
necessary for determination of the absolute
POC:s, since the influence of elastic deformation

of the sample on the optical path change »; - d,

under the action of mechanical stress o,, could
be considerable, sometimes even dominant (e.g.,
in the cases of POE, when the change in the
optical path is mainly caused by the sample
deformation, and the refractive index change
o, —>0).

Let us consider a crystal sample placed into
the measuring arm of a one—pass interferometer
(fig. 2), for example the Mach—Zender one [6,7].
One can see that the change in the optical path
O\, =0(n; -d,)depends on both the refractive

index change 6#n; and the the sample thickness
change &d:
oA, =0(n;-d)=0on,-d, +od, -n,. (11)
Besides, we have to take into account that
the optical path decreases, because the crystal,
being deformed by the value ddk, subtracts from
the optical path the value
oA, =add, -n,., (12)
where n, 1s the refractive index of the medium in
which the interferometer ray propagates.
If the sample is in the air, then n~=1.

J'Gm Sample

Light ray ,

7 7

Fig.2. Sample deformation under the operation
of om: continuous line — o, = 0, dotted line -
om# 0.
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Therefore, we rewrite (11) as:
oA, =on,-d, +dd, -n,—od, -n, =
=on;-d, +d, (n; -1).
The unity appearing in the brackets of the

(13)

r.h.s. of equation (13) is often forgotten by
workers in the field. This concerns also the
initiator of piezo—optics in crystals, F.Pockels
(see [8]). The mistake is included even in the
contemporary earnest monograph [1].

Expressing odi in terms of the relative
deformation e, we rewrite (13) in the form

oA, =0n,; -d, +e.d, (n;—1). (14)

Formula (14) is central for a piezo-optical
experiment. We can use it to write out the
relation for determining the principal POCs 7y,
(i, m =1,2,3 — see group 1 in (6)). Experimental
determination of the principal POCs implies that
the light polarization (/) and the uniaxial
pressure (m) are directed along the principal
crystallographic axes (the axes of the optical
indicatrix X, X5, X3).

In the above case, it is easy to get the
expressions for the changes in the refractive
index On; induced by mechanical stress and the
deformations e, which enter equation (14). This
may be done by means of the absolute POCs 7,
(for om;) and the
compliance Sy, (for ey).

coefficients of elastic
We obtain the
expression for on; in terms of the principal
components 7, from the polarization constants
B; and the equation (3) for piezo—optical effect.

B, =1/n},

resulting in the following relation between the

According to  definition,

small piezo-optical changes d#; and 8B;:

on; = ! 1 =
B, +5B, +[B; 15)
AL
or, with taking (3) into account,
on; = —%ﬂimamn?. (16)

Now we can write the expression for e,
which is given by the Hook’s law:
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e, =S,,0 17

km™~ m>
where S,, are the coefficients of elastic
compliance.

Inserting (16) and (17) into (14), we obtain
the relations for the principal POCs 7y,
enabling one to determine them on the basis of
experimental data for the optical path changes

oA, (o,), with accounting for the elasticity

effect:

O, z_%ﬂ-imdmdkn? + 8,0 d (n, =) (18)
2 20A

of iy = 20 (1) - 2 (19)
n; O N dy

It is worthwhile that (16), (18) and (19) are
strictly correct for the principal 7, in case when
the turning coefficients 7, (group III in (6)) are
equal to zero (that being typical for the crystals
with a high symmetry and rhombic ones). Even
if one of the mentioned coefficients is non-zero,
then the corresponding component of the tensor
o also imposes a rotation of optical indicatrix,
and the latter affects additionally the value dn;.
Below we consider the errors in determination
of principal 7, associated with the rotation of
optical indicatrix.

2.2. Influence of indicatrix rotations on the
accuracy of principal POCs

Let us choose, for example, a monoclinic crystal
having three principal turning coefficients 7y,
(w51, 752, 7s3). We wish to prove that these
coefficients affect a piezo-optical change in the
indices on; (7). The
coefficients 75, give rise to the off-diagonal

principal refractive

terms 8Bs in the initially diagonal polarization
constant tensor B; . According to (3), this yields

in
0Bs =r5,0,,. (20)
The perturbed tensor B; then becomes
B, 0 OB
B,=| 0 B, 0 | €2y
5By 0 B,

This is why the equation (10) for the
perturbed indicatrix will take the form

B\x] + B,x; + Byx; +20Bsx;x; =1. (22)

To determine the new half-axes of the

indicatrix, we should reduce formula (22) to the
canonical form,

Xt + x5 + x5 =1, (23)
where A;, A, A; are the eigenvalues of the
perturbed tensor. These 4; determine the new
values of the indicatrix half-axes, and so the new
refractive indices #';. Determination of A
consists in solving the characteristic (or secular)
equation [9,10]:

B -4 0 OB
0 B,-4 0 |=0. (24)
0B 0 B, -4
Calculating the determinant leads to the
equation
(B, - 2|8, - 2B, - 1)~ 382|=0,

with its obvious solutions given by
A, =B,;

Az = 12 1t

Here the sign “+” corresponds to A; and “—*
to 13.
We conclude from (25) that the new

refractive index »n', and the old one n, are

identical, because A, =B, =1/n;, while n, and

n; change by the values

on',.=n,,—n ! !
13- M3 M3 = - =
/11,3 4 Bl,3 (26)
_ 0B _ mon

2B}y’ (B, - B;)  2Biy'(B, - By)

9

where the sign corresponds to on’y, and “+”

to on';. We are to emphasize that the equation
(26) has been obtained with neglecting the small

value 6B in the denominator, for a smallness
of 0B; (i = 4, 5, 6) represents an empiric
postulate valid for the most of crystals:
OB, << B,,(i=1,2,3);
B, <<B,-B,,(i,j =12,3). (27)

Ukr. J. Phys. Opt. V4. Nul
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Hence, the relation (26) proves that the
turning POCs do not impose rotation of the
indicatrix only, but also change the principal
refractive index »; (= 1,2,3). The comparison of
on; and o#'; is given below (see formulae (33)
and (34)).

Now we clarify a link between the
coefficients 7, and the angles of the indicatrix
rotation. For this aim, we should find the

coordinates x; of the eigenvectors Z of tensor
B’; from (21) in the principal coordinate system
X1, %X, X;5. According to (21), these coordinates
X, %, X4 satisfy the equation system [11-13]

(B, —A)x, + 0Bsx; =0,

(B, —A)x, =0, (28)

OBx; +(By; —A)x; =0.

Inserting A; into (28), we find the

coordinates x;, X, and x; of the eigenvector A, :
B, -
1 1 xl

X, =0, x;=- 5B
5

5B, (29)

Xy = ———X,
Bs_}“l

—

The angle between the eigenvector /4
(ZH X'1) and the principal axis X; (i.e., the

rotation angle of the indicatrix) is

tana = x, / x, (fig. 3). Inserting the expression for
A from (26) into the second or third equation
(29) and neglecting the small values 6BZ in the
denominator, we find:

OB

tan ¢ = ———.
31_33

(30)

The same way, inserting A5 into (28) gives

Fig.3. Section of perturbed indicatrix by the
plane perpendicular to X,.

Ukr. J. Phys. Opt. V4. Nul

the coordinates of the eigenvector Z and the
A3 (43 [X5)  we  get
tana =—x, / x; (see fig. 3), the result that
coincides with (30).

taking formula (25) and the

relations A=4, and A, = B, into account, we
of the

rotation  angle

Finally,

obtain from (28) the coordinates
eigenvector E : =0, 5#0, x;=0. The vector
4, is directed along the principal axis X; and so

this axis does not rotate.

Inserting the values of dBs and the turning
coefficients 7, from (20) into (30), we write the
relations for finding the turning POCs from the
measured angle o of the indicatrix rotation
around X, under the action of o,,:

_ (B, - By)tan

s, . 3D
o

m

We also write, without proving, the
analogous relations for the turning coefficients
Tm and  mn. They include the indicatrix
and X3,
respectively, under the action of o, (m=1, 2, 3):

_ (By; - By))tanx

rotations around the axes X

7 4m
O-m
(32)
7, = (B, - B))tanax .
o

m

The diagonal turning—shift coefficients 74,
55, and T can be also determined on the basis
of the known rotations of the indicatrix around
the axes X;, X, and Xj, respectively. We shall
consider this question below (see formulae (52—
55)).

Now we compare the contributions of

on,yand on' | 5. For this aim, we insert formulae
(30) or (31) into (26) and obtain
on' = % (B, - B33)/t2an ‘o N
’ 2B, (33)

~ +An, -tan’ a,

where An, = n3 — n; is the optical birefringence.
After using the typical values 4n,= 0.1 — 0.001,
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Zm= 310" m*’N and o, = 10" N/m’ =
=100 kG/cm® in (33) and (16) (with such the o,
values, we have a < 0,2 deg), we obtain

o', =107 +10")om,. (34)

This is correct for the most of known
crystals.

One can see that the contribution of the 7,
coefficients to the change of the principal
refractive indices n; and n3 is by 2—4 orders of
magnitude less than that of the principal POCs.
As a result, the neglect of this contribution
involves the error in the principal coefficients
T Which is, as a rule, considerably less than
1%. Since the accuracy for the absolute POCs,
achievable with the modern methods, does not
exceed 10%, the neglect of dn'; in the
determination of principal 7, is absolutely
justified. Besides, it is demonstrated in [14] that
the indicatrix rotation by the angle o brings in
most cases (e.g., within the interferometric
method) the experimental error &n', 5, which is
given by the expression similar to (26), though
with the opposite sign. That is why we have

'y 5+ 5 = 0. (35)

Thus, the contribution of dn'i; into the
change of the principal refractive indices caused
by the symmetry is compensated by the
experimental error 8n*1,3. Basing on (34) and
(35), we could therefore state that the principal
POCs my, for all the symmetry groups may be
determined without “looking back” on the
turning POCs.

2.3. Determination of shift POCs

Below we give a particular example for the
monoclinic  crystals having three such
coefficients (75, s and m35). For their determi-
nation, it is necessary to apply a pressure such
that the component o5 of the stress tensor be
non-zero. A 45°-cut sample shown in fig. 4

seems to be optimum in this relation. Then the

unity vector p (a, b, c) of the uniaxial pressure

along the direction 5 has the directional cosines

a|

Fig.4. Scheme of sample orientation used for
determination of coefficients 75 and 7y,

a=c=cos45°= \/5/2 and b = cos 90° =0, and
the tensor o, according to (7), is as follows:

o, =lc/2, 0, 6/2, 0, o/2, 0] (36)

One can see that only the components 6, o3
and o5 are non-zero. Using formulae (3) or (5)
and taking into account that m, = 0 for some
coefficients, we obtain the changes in the optical

polarization constants 0By, ..., dBs:

SB, =%(7r” + 73 +715), OB, =0,
o
0B, :E(”ﬂ + T3 + Tss),
o
OB; :3(”51 + 753+ Tss) s (37)

5B, :%(;z31 + 7Ty +73s), OB = 0.

Inserting (37) into (10), the following
equation of perturbed indicatrix might be
derived:

- _
[314'3(7[11 +7T3+705) x12+
o ] 2

J{B2 +— (T + 7y +7ys) X5 +
2 - (38)

"[33 +%(”31 + 3+ Ts) X3 =
=0(ms) + 753 +7g5) x5 =1.

Let the light propagate along X, (k = 2).
Then the polarization is possible along X; and
X;3(f=1, 3 —see fig. 4). If /= 1, the intersection
of the indicatrix (38) and the axis X; gives the
coordinate x; that corresponds to the new
refractive index along X; (n'y). It is clear that the
coordinates x, = x3 = 0. Keeping this condition

Ukr. J. Phys. Opt. V4. Nul
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and formula (37) in mind, we obtain for x,;=n',
o
[Bl+5(”11+”13+”15)i|x12 =1, (39)

or

n', =x =1/\/B1 +(my +7my+ms)ol/2.

Since n=1/ \/E for the unperturbed

indicatrix, the change in n; caused by the stress

o along the direction 5 (m=5) becomes

N
on =n'\—n, =

=—(my, + 75 4—7115)0'/4313/2 = (40)

o 3
= _Z(”n + 73+ ys)ny

Quite similar, for the same direction of
(k=2) and the other
polarization i = 3 (fig. 4) (x, =x;=0) we obtain
from (38)

[B3 +%(71'31 + Ty + o5 )}%2 =1,

light propagation

n'y=x;= 1/\/1’3’3 + (w3 + 743 +735)0 /2,
whence, on taking the relation n; = 1/,/B3 into

account, one finally has

— ' —
ony, =n'y—ny =

(41)

o 3
:_Z(ﬂﬂ + Ty + Ty )Ny

Let us now reverse the pressure direction

(from m=5 to m=5 — see fig.4). Then
; = ; (\/5/2, 0, —\/5/2), and the tensor o, in

accordance with (7), looks as ¢, = (6/2, 0, 6/2,
0, —o/2, 0). This differs from the result (36) by
the sign of the component os. Therefore, the
signs near the coefficients 75, /s, 735 and 755 in
(37) and (38) change from “+” to “—*, and we
obtain the additional relation for both 75 and

ms, which is needed for determining each of
them. They differ from (40) and (41) by the

signs near 75 and 735 only:

o
on, = _Z(”n + 73 _7715)’1135
(42)
o 3
ony = _Z(”n + T3y — T35 )0y
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Determination of 7s. One can see from the
equation (38) and fig. 4 that the determination of
the shift coefficient 7ms should imply the
polarization 7 = 2. It is possible for the light

direction k=5 or k=5 . Let it be k=5 . Then we

have m=5 (the case of m=5 is also possible, but
it is difficult to provide the common directions
of the pressure and the light propagation). The
equation of the perturbed indicatrix for m=5 is
already ascertained (see formula (38)). To find
on,, we intersect the surface (38) by the axis X,.
Then x;=x;=0 and we get from (38)

[32 +(my + 7055 +7z25)0/2]x§ =1,

n'y,=x, =1/\/B2 + (g + 7y +745)0 /2,
whence, on taking n, = 1/,/B, into account,
on, =n'y—n, =
(43)

o 3
Z_Z(”zl + oy + W5 )05

Changing the directions of light
propagation and the pressure (k=5, m=§), we
have another equation for 7ys:
5”2:_(7721"'7723_”25)5'”;- (44)
2.4. Determination of turning POCs on the
basis of refractive indices
Let us give a single example for monoclinic
crystals. We consider at first the case of the ms;
coefficient. Here the experimental conditions are
as follows: m =2,k =5and i = 5 (for the same
sample as in chapter 2.3 — see fig. 4). According
to (3) or (5), we have
0B, =7,y x0; OBy =7y x0o; OB, =0By=
=0; and 0B5 =5, -o . Therefore, the perturbed

OB, =7, x0;

indicatrix (10) takes the form:

(B, +7r120')x12 +(B, +7r220')x§ + (45)
+(B; + 7r320')x32 +275,x,%5 =1,
The condition x; = x3; x, = 0 is correct for
the polarization /=5 (fig. 5). Inserting the latter

into (45), we arrive at

(B, + By + 71,,0 + 1,0 + 270,0)x7 =1,
1 3 12 22 52 1 ; (46)

X, =1/yB + By +(m, + 7y +275,)0



B.Mytsyk

Fig.5. Intersection of the indicatrix by the line
X=Xz, X =0 (I =5)

One can see from fig.5  that
n's =X +x3 =x1\/§, or

ns :\/5/\/81 + B, + (7, + 75, +275,)0 .

Making use of the latter relation at =0, we

n :\/5/1/81 + B, for  the

unperturbed indicatrix, while the piezo-optical

obtain

change in the refractive index ns is given by
ons =n; —ns =
= — (Mt T 2720/ [N2 (Bi+ By, (47)
Under the
conditions m=2, k=5 and /=5 , the condition for

“symmetric”  experimental
intersecting the indicatrix (45) and the straight
line, coinciding with /=5, may be written as
x| = —x3, X, =0. Therefore, the sign minus should
now be near 275, in (46) and (47). So we derive
another relation for determination of 7s,.

Determination of turning POCs 75, and 7s3.
It is necessary to ensure such the experimental
conditions, under which the components ¢, and
o; are non-zero, whereas /=5 or /=5 for the
polarization. Such the conditions are as follows:
(1) m=5, k=5and /=5, and the “symmetric”
ones (2) m=5,k=5and /=5 .

Specifying the indicatrix equation (38) for
the conditions (1), taking the pressure direction
as m=5 (then the tensor o, is given by (36)) and
considering the intersection of (38) by the
straight line x; = x3, x, = 0 (this corresponds to

n's=x; \/5 (c#0) and

ns= X J2 (6 = 0) — everything like in the case

=5), we have

of formula (47). Then the relation for ons is also

10

similar:
. o2
ons =n's—n; =X
4(B, + By)
X[/ + 703 + s + 7Ty Ty + (48)

+ 7035 + 275y + 753+ 7s5) ]

For the conditions (2) (see above), we
obtain the analogous expression, though with the
sign minus near the sum 7s,,, in the brackets and
near 7mss. Solving these two equations with

respect to 75, + 75, and 755, we get the sum
75, + 75y and mss separately.

Now a question arises how 7s; and ms; can
be separated? For this aim, it is suggested in
[13] to make a sample not of 45°-orientation
(see fig. 4), but, e.g., of 30° (a=30°, fig. 6).
Then the

equation (48) contains

75 co8’ @+, sin®a  rather than the sum
75, +7s;. When being combined with the
previously known sum 75 +7g;, this should
allow to determine 7+, separately. The

relations for s, that account for the elasticity
effect are given in a complete form in table 2.

It is clear that all the
recommendations as for determining the turning

mentioned

coefficients 75, and 53 on the basis of on;,
especially those taking the relations for the case
of a#45° into account, have rather fundamental
character. Let us consider that each of the
known coefficients in the expressions like (48)
can be determined with the error of Px10%.
There are six such coefficients 7z, in (48), and
the errors [ are additive. Then the sum
751+ 753+ 7155 can be determined with the mean-

1 |5' 3
ol
| gv

2

Fig.6. Scheme of sample orientation for a
separate determination of POCs 51 and 7s3.
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square error B'=./7 82 = B/7 =26%. Moreover,

another measurement must be performed for the
case of “symmetric” conditions for the sum
st s, and one more for the sum
715108 0+ ms3sin’al. As a consequence, the error
increases additionally by B2 =14%. Hence,
the total error amounts about 40% or even over
50%, if the elasticity is taken into consideration.
A labour—consuming character of the
experiment should be also added to deficiencies
of this method. Therefore we shall consider
below (in chapter 2.6) the

possibilities to determine the turning coefficients

alternative

sm (as well as the diagonal turning—shift POCs
T4, 7ss and ) based on the experimental data
for the pressure—induced rotations of the optical
indicatrix.

2.5. Determination of turning—shift POCs 74,
To6s Tos AN 7746

In order to determine 74, We are to ensure
the experimental conditions m=4, k=4 and i=4
(fig. 7). Then p=p(0, 1/¥2, 1/42) and

om = [0, 6/2, /2, 6/2, 0, 0]. Writing out the
equation of the perturbed indicatrix and crossing

it by the straight line x; = 0, x, = x3, which

corresponds to the direction i = 4, we obtain
n, = X24/2 (620), ny=x,./2 (at ¢ = 0), together

with their difference:
o2

—_—X
4B, + B;)*"? (49)

X(Tyy + 7Tyy + T3y + T35 +2714,).

o, =

P

A

a)

3 41 2 ¥
I
| _
— 1 4
1
Fig.7. Scheme of sample orientation for
determination of POCs m and mn
(i, m=1,2,...,6).

The expression for 6n; under the

“symmetric” conditions m=4_1, k=4, i=4 is the
same as (49).
The conditions for determination of mes are

m=6, k=6, i=6 or m=6, k=6, i=6(fig. 1), in
which case we also arrive at the relation:
Sng = n. = —“—‘53/2 X
(B, +B,) (50)
X (7 + 70y + Ty + Ty +27046).
Determination of the turning—shift POCs
T4 and Ty represent the most complicated task.
For example, in case of 4 the index for the
polarization should be /=6 (the diagonal bet-
ween X;, X;) and the component o, of the tensor
G, should be simultaneously non-zero. This can
be done with a sample orientation shown in
fig. 8 (see the proof in [13]).
Then the vector ; and the tensor G,, have

all their components non-zero under the

condition of mLlA (; being directed along the

diagonal of 3 and 6): ;=;(cos60°, co0s60°,

A b)

Fig.8. Scheme of sample orientation necessary for determination of the POC 7s4: ()
original sample with 45°—orientation with respect to the axes X; and X;; (b) additionally
made 45°—cut with respect to the axis X; and the direction 6.

Ukr. J. Phys. Opt. V4. Nul
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cos45°) and o,=[1/4, 1/4, 1/2, 2/4, 2/4,
1/4]c. The light should propagate perpendicular
to the side 4 (k1.4) and the polarization 7 = 6 is
needed. Performing the well-known operations
(calculations for the perturbed indicatrix, its
0, and

the refractive indices n's and #ng) this time, we

crossing by the straight line x; = x;, x3 =

get:
ong = \7— 72‘ +&+%+
7[15 ”21 Ty | T3
+—+—+ (51)
Y 2
4 s +” )/(B + B,

AN

To determine 7, the polarization along the
direction /=4 (the diagonal of X, and X;) and a
non-zero G component of the tensor o, are
necessary (the scheme is analogous to that in

fig.8, see also table 2.1 for the case of 7). Then
we have ; =; (cos45°, cos60°, cos60°) and

om=[1/2, 1/4, 1/4, 1/4, \2/4, J2/4]c. Now it is
easy to write the equation of the perturbed
indicatrix and cross it by the straight line x; = 0,
Xy = x3, that corresponds to the condition 7/=4.
The expression for dn4 appears to be analogous
to (51), though it now includes 7 (see table
2.1). One can see from (51) that the accuracy of
4 determination (the same refers to myg) is
equal to B'=B+/10 ~35%, or above 50% with
taking the elasticity into account. Another way
for determining these POCs is pointed to in
chapter 2.6.

2.6. Determination of some POCs from the
induced rotations of the indicatrix

Determination of 15, and ms;. If the stresses
G = 6 or 63 = ¢ are acting on a sample of
monoclinic crystal with its sides perpendicular
to the axes X;, X; and X3, , we obtain from (3)
0Bs = m0 or 8Bs = ms30. Inserting these
expressions into (30), we have

75 =(B, —By)tana, /oy, (52)
s, =(B, —B;)tana, / 05,

12

where the index 2 of the angle o, means the
rotation about the axis X,
We do not

expression for 7s,, because it is hard to realize

represent the analogous
the experimental geometry for which k=m=2.
When the stress is applied along the direction
m=5, the tensor o, has three components (36)
G| = 63 = G5 = 6/2 but not one. So the expression
for mss is somewhat complicated. The quantity
0Bs is formed by the sum of coefficients
51 + 753+ 755 (see formula (37)). Inserting (37)
into (30), we get:

2
75 = —(Bi = Bytana, — (75 + 75;). (53)

Thus, 755 may be determined on the basis
of a,, whenever a preliminarily information on
15, and Ts3 1S available.

The relations applied for determination of
4 and g6 from the rotations o and o (around
X; and X;, respectively) are more simple,
because the turning POCs 7, and 7, are equal
to zero for monoclinic crystals:

2

Ty =—(B;—B,)tana;
o (54)
2

e =— (B, — B))tan a5.
o

Let us add the following notice to formula
(54). When determining 4, we apply the
pressure ¢ along the direction m=4 and so we
[0, 6/2, 6/2, &/2, 0, 0]. Here the

components 6, = 63 = ¢/ 2 are non-zero. They

have o, =

induce the additional indicatrix rotation around
the axis X,, because both 7s; and ms; are non-
zero. Such the rotation changes only the
refractive index of the light wave polarized in
the plane X;, X; (k=1), and the polarization
plane does not therefore change. In other words,
the rotation around X; is related to the
coefficient 7y, only. The same remark also
concerns the determination of g from the
indicatrix rotation around X;.

Similarly to the case of derivation of (53)
for monoclinic crystals, it is easy to show that
the expression (53) is equally correct for triclinic

Ukr. J. Phys. Opt. V4. Nul
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crystals. As for the coefficients 4 and 7, the
following formulae are correct:

2
7y =— (B —B,)tana —(743 +74,);
o (55)

2
7[66 :;(BZ —Bl)tana:; _(7[62 +7Z—61)’

because OB, = (74, + 743 +74)0/2 for o acting
along m=4 and OB, = (g + 7y, + 7)o /2 for

m=6. Inserting these expressions into (30) with
the appropriate cyclic change of indices near
(By — B;), we have again the relation (55).

The relations (54) are correct for rhombic
crystals, since the turning POCs, entering (55),
are equal to zero, and the relations (53) with
751 = 753 = 0 are valid.

Regarding optically uniaxial crystals,
except for trigonal ones, we may recommend to
use the expression (54) only for 7= 755 (since
mm = 0), when the light propagates perpendicu-
lar to the optical axis. The expression for 7
(k=3) in this case lacks its meaning, because it
has been earlier obtained from (30) under the
condition 8B <<B, — By (see formula (27)). On
the basis of (30) and the latter condition, we
gain the analogous condition for tana:
tano<<B, — By. However, B,=B, for any uniaxial
crystals, and so the condition (27) is not ful-
filled. As a result, formula (30) and, accor-
dingly, formula (54) cannot be correct for the
coefficient 7.

Turning now to the case of trigonal uniaxial
crystals, we remark that the expression (55) is
correct for /4 = 755, since 73 = 0 for such the
crystals.

Determination of 74 and 7. If the stress o
along m=6 is applied to a sample (fig. 1), we
have 6,,= [6/2, 6/2, 0, 0, 0, 6/2]. Let us assume
that the light propagates along the direction
k=6. Then we can measure (e.g., with the
known method of extinction) the projection a,
of rotation angle of the axis 3 and the same for
the direction i=6 on the plane perpendicular to

k=6 . This rotation would be always available

Ukr. J. Phys. Opt. V4. Nul

because of a character of total indicatrix rotation
around the axes X; and X, since the turning per-
turbations 0B, and 6Bs in this case are non-zero.
It is easy to see that da4 includes 7, and OBs
has the contributions of the coefficients 7s; and
7s>. Having measured the rotation o, and the
known values of 75, and 75,, we are able to find
/6. The details referring to determination of 76
and 74 are mentioned in the study [15].

Proceeding from the information contained
in the works [16, 17], where a high accuracy for
measuring the indicatrix rotation angles is
declared (0=0.05-5.0 deg, with 6,=100 kG/cm”
for the most of crystals), we can affirm that the
method of indicatrix rotation can, in some cases,
provide a higher accuracy for determination of
turning and turning-shift POCs than the method
of measuring o#;.

3. Peculiarities of POE: accounting for
the elastic deformation and unambiguity
in the choice of right crystal-physical
coordinate system

3.1. Influence of elastic deformation on
determination of POC with the
interferometric method

We have already mentioned the relations (18),

(19) for the principal POCs, that take into
account the elastic deformations e of a sample
in the light propagation direction. In this chapter
we take into account the elastic deformation of
sample for the more complicated experimental
conditions. Namely, let us determine the POCs,
which are not principal ones. We give the
relevant examples for monoclinic crystals.

Let us take account of the elasticity (i.e.,
determine the expression for ey) at the following
conditions: m=2, k= 5, i=5 (fig. 4). We shall
use the equation of a characteristic surface
tensor ey:

exX; +e,X5 +eyxs +e,x,X; +
(56)
+esx, Xy +egx X, =1,
where e;, e, and e; denote the mean changes of
the half-axes of the characteristic surface in the

coordinate system X, X,, X3, respectively, and

13
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e4, es and e4 the rotations of this surface around
the mentioned axes.
For m=2, the tensor G, has the component
o, = o only. Using the Hook’s law (17) and the
matrix of elastic compliance coefficients Sy,
(k being the direction of deformation, which
coincides with the light propagation direction),
we can write the following expression for the
tensor components ¢:
e, =8,,0,e, =5,,0,6; =5;,0,
e, =0,e; =8;,0,¢, =0.
On this basis we rewrite (56) as:
S120'x12 + Szzovcz2 + 57)
+8,0x7 + Sg,0x,x; = 1.
Using the equation of straight line x, = 0,
X, =—x3, (k=§ — see fig. 9), along which we stu-
dy the deformation (k=§ ), we obtain the
coordinate of the intersection point x;:
Slzoxlz + S320'xlz - 55207512 =1L
3 1 . (58)
\/(Slz +83 = S85)0

One can see from fig. 9 that the half-axis of

X

the characteristic surface 1/ leg is equal to

1/\/¥=\1x12+x32 =x1\/_:
2\/5/\/(*?12 +83 —S5)0

The expression for e; is therefore as

follows:

o
e = E(S12 +85, = S5). (59)
Inserting (59) for ez, along with the

expression (47) for ons and the expression
ns =2/ \/m (i=5) into equation (14),
instead of n;, we finally have

T Ty + 27w,

V2(B, + B;)*"?
1
+E(S12 +85, =S5 )x (60)

L_l)
/B, + B,

5A§ = ><0'd§

x od<(

14

This allows determining 75, on the basis of

the measured 5A§ and the account for the elasti-

city. The relation (59) is also correct for the con-
ditions of determination of zs and ms (see

(42)).
At the

determination of ws, (m=2, k=5, i=§), we can

“symmetric”  conditions  for

employ the method mentioned above and obtain
the following expression for e:

€s :%(Slz +83 +85)- (61)

It is also correct for the “symmetric”
conditions in case of the POC 75 and 735. The
complete expressions for s, 735 and 75, that
account for the elasticity at the direct and
“symmetric” conditions and are based on the
experimental optical path changes d4 are given
in table 2.

The conditions for determination of the

coefficients 1,5 and the sum 75+ 753+ 755 are as

follows: m=5 and k=5 . Then the equation of
straight lines, along which the light propagates
and deformation occurs, looks as =0,
X;= —X;, whereas the tensor o, is given by
om = [6/2, 0, 6/2, 0, /2, 0]. Therefore, the
components e, having relation to the sample
deformation along the direction x, = 0, x; = —x3,

are given by
o
€ :E(Sn +8;3 +85),

o
€3 :E(Sm +83; + 855),

o
€s 23(S51 +85;+Ss5),

and the crossing of the surface (56) and the
above straight line may be written as
(Si+S13+ 85 +85 +S;3 +
+ 835 =S5, = Ss3 — Sss)ox; /2 =1.
Since Skm=Snx and the
1/ e = xlﬁ(ﬁg. 9), we find:

(62)

semi-axis 1s

es :%(Sn + 833 =855 +28)3). (63)
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It is easy to make sure that the expression
for es is the same under the “symmetric”

conditions for mps and 75+ 73— w55 (mM=S5,

k=§). Inserting (63) for es, (48) for dns and

(43) for 6n, into (14), we get the expressions
necessary for determining the POC ms, 75
and 75+ 7s3.

We do not give the other expressions for e,
because they can be derived quite similarly to
those for o#; and ey. The corresponding formulae
necessary for determination of the turning, shift
and the turning—shift POCs are brought together
in table 2. They refer to all symmetry classes,
except for the triclinic ones, owing to a limited
volume of this article. The relations for the
triclinic crystals may be found in [3,18]. For a
more convenience, the schemes illustrating the
necessary sample orientation and the direct and
“symmetric” experimental conditions are also
given in table 2.

3.2. Choice of positive signs of the right co—
ordinate system axes

For the most of non-principal POCs,
determination of their sign is of a primary
importance, along with the absolute value
[19,20]. We explain this point on the example of
coefficient 4 for trigonal symmetry class 3m.
Let us write the corresponding relations for the
“symmetric” experimental conditions from table
2.4 and disregard the elasticity effect:

on, :_%(7512‘”7134'7714)”13
for i=1, k=4, m=4;

(64)
o
ony = _Z(”lz + 7T _”14)’713

for i=1, k=4, m = 4.

We note that fig. 10a and 10b differ by a
choice of right crystal-physical coordinate
system only. One can therefore see that it is
impossible to distinguish definitely between the
pressure directions m = 4 and m =4 . The sign
of the coefficient m4 cannot therefore be
determined. The POC 4 enters the expression

Ukr. J. Phys. Opt. V4. Nul

X3

1/ e 1We—3
X3
/ e
X X,
k=5

Fig.9. Crossing of characteristic surface of the
deformation tensor e, by the plane perpendi-
cular to X,.

for my (see table 2.4) as a known quantity.
Therefore, the POC my4 is determined up to its
absolute value.

The described uncertainty does not concern
to all 32 symmetry classes, but only to those 10
classes, whose POC matrixes have turning, shift
and turning-shift coefficients my, entering the
relations of table 2 with the signs «+» for the
“symmetric” experimental conditions. 6 polar
classes (1, 2, m, 3, 32 and 3m) possessing piezo-

electrical effect and 4 inversion classes (i, 2/m
3and §m) belong to these groups. The other 6
symmetry classes (4, 4, 4/m, 6, 6 and 6/m)
have one only uncertainty in sign — for s (see

table 2.5). For the
geometry, mg can be also determined from the

relevant experimental

birefringence or the retardation (see formulae

(78)-(80)),

However,

though again up to the sign.

there is another experimental
geometry for the mentioned symmetry class, in
which either ms can be determined definitely

(see, e.g., table 2.5) or the dependence

a)

Fig.10. An example of uncertainty in the
choice of right coordinate system: (a) the
positive direction of the axis 1 is directed to
observer, and (b) — the alternative case.
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7es = 711 — w12 1s correct (for the classes 6, 6 and
6/m). That is why the uncertainty for m, for
these symmetry classes is absent in practice.

The uncertainty for @, in some important
cases can be removed by means of an
appropriate choice of the right coordinate
system. It is necessary to fix the positive
directions for two of the principal axes X; only.
Then the direction of the third axis would be
given by the definition of right coordinate
system. In case of polar symmetry classes, the
positive directions of the X axes can be chosen
on the basis of the corresponding non-zero
piezo-electrical coefficients. The appropriate
details are considered in [4]. For the inversion
symmetry crystals, the signs of the axes X; must
be given on the basis of those of the most simple
Tim (shift or turning ones), for which the sign
uncertainty (4, 715, 52, a1, €LC.) 1S present.

We emphasize that it is expedient in the
POE studies not to complicate recommendations
for choosing the positive signs of
crystallographic axes and to use the universal
method of approach. Therefore, for the all 10
symmetry classes mentioned above (both polar
and inversion ones) we suggest to fix the signs
of X; on the basis of POE only, namely on the
basis of those m,, for which the sign dualism is
present. For example, the direction of the axis
X, would be “+” if w5 >0, etc. The correspon-

ding recommendations are gathered in table 1.

Table 1. Recommendations for the choice of
signs of the axes X

Symmetry | The recommended | Positive signs of X
classes | mmto give signs of Given | Deriva_
the axes X; .
tive
1’133’ 3 T3>0, m5>0 X, X5 X3
m, 2, 2/m J'C15>O Xg X],Xg,
32,3m,3m mi4>0 X, X, X3
Let us notice the following. If it is

recommended there to fix the sign of one axis

16

only, this means that we deal with non-zero
POCs, whose definite determination demands
choosing the sign «+» of one more axis. The
same refers to the POCs which are equal,
according to the POC matrix appearance, to the
already chosen coefficient .

We are at last to notice the following. If the
(e.g.,
comparable with the experimental accuracy), we
should choose the other POC and further
analyze, which of the axes are fixed at the

recommended i, values are small

chosen .

4. Immersion method for determination
of POC

The immersion—interferometric method for the
studies of POE suggested in [7] allows, firstly,
to remove the influence of elastic deformation
on the accuracy of 7, and, secondly, to find this
deformation and the corresponding coefficients
of elastic compliance.

The essence of the method is putting a
sample into the liquid with the refractive index

equal to that of the crystal (n; or \/2/(B, +B,) )

for the “diagonal” directions of polarization.
Then the term (n—1) in (14) is equal to zero,
since the unity there stands for the refractive
index of the medium, in which the sample is
placed. Since formula (14) is written for the
sample in air, the case of sample in the
immersion liquid could be described with taking
into account (16) for the principal POCs:

m= m i

sA" (65)

3,
Jmni dk

. 1
oA, =dn, -d, 2—5721 o,md, or
T . = —

Similarly, the elastic contributions

disappear in all the relations of table 2. For
instance, we get

* O
oA, = —Z(iz31 + 7y T 755 )d2n33 (66)

for the component m3s of monoclinic crystals
(m=5 or 5).
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This method also allows us to determine the
principal coefficients S, or their sum (for the
“diagonal”  experimental conditions). For
example, after inserting the expression for 7y,
taken from (65), into formula (18) (it is correct

for the sample in air), we obtain:

A, — O,
L (©7)
dko-m (ni _1)
In formulae (65)-(67), 8A and §A’, are the

changes in the optical paths (retardation between
the interferometer rays) under the action of oy,
for the sample in air and liquid, respectively.
The expressions (65) and (67) within the
half-wave tension method look as
R A
"o nd,
B A 1 1
“ T 2d, (1) o) o)

im

; (68)

(k)

im °

(ky*

where o, ,0,, are the half-wave mechanical

stresses within the air and liquid; m, i and k the
directions of the pressure, polarization and the
light propagation, respectively.

Let us notice that the refractive index of the
immersion liquid 7, should not obligatory be
precisely equal to n;. Reference [21] describes
the method in case of m,#n. Then the
expressions (65), (67) and (68) for w;, and Sy,
are slightly different. For example, we have

Ciars
Lo o

" i (n, )

LI
o Lo oW
km —

2d,(n, -1)

(69)

instead of (68). It is easy to see that the
expressions (69) at n,=n; are the same as (68).
The relations (69) have a wider application
range: using the temperature and dispersion
relations for n, and m;, one can study the
corresponding  dependences for the my,
coefficients.
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The sign of the induced changes in the
optical path (8A,and SA, ) or the corresponding

half-wave stresses could be determined by
means of inserting a glass plate, optical wedge,
or Berek plate into the measuring arm of
interferometer. For example, a deviation of a
glass plate from the orientation perpendicular to
the ray shifts the interferometric pattern, because
of an increase in the optical path length. If the
application of o, shifts the interferometric
fringes in the same direction, then O8A; also
increases the optical path. The sign of JSA
should therefore be «+», etc.

In this article we give only the formulae for
the half-wave method in case of determination
of my, and Sym. We do not consider the other

methods for determining A, and A, , as well

as the appropriate schemes and the comments to
specific experimental methods, due to a

restricted volume of the article.

5. POE from the birefringence and
retardation, including the absolute POCs.
Symmetry lowering

5.1. Piezo-optical coefficients of birefringence
TT*m and those of retardation n°,

Let us give a strict definition of the
mentioned piezo-optical coefficients. The
change in the birefringence Any as a result of the
pressure Gy, is given by

OAn, = on; —dn;, (70)

where 0n;, on; are the refractive index changes
along the two mutually perpendicular
polarization directions 7 and ; in the crystal, and
k is the light propagation direction, i.e., k17 ;.

We insert the expressions for 6n;; from (16)
into (70) and so obtain

1
SAn, = —E(ﬂ'imn? -7 uni)o,,.  (71)
Using the notation taken from the
authoritative monograph [9],
”Zm = 7z-t‘mni3 _ﬂ-jmni’ (72)

one can write (71) as
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1 .
O0An, = _Eﬂ-kmam or
. 25An, (73)
Tom =~ .
o

Hence, the POC 7*,, is the coefficient that
describes the birefringence change 5Any induced
by mechanical stress o,,.. We call it as POC of
birefringence for that reason. From the expres-
sions (73) and (1) we get the following relation
between 7%, and the Brewster’s constant:
¥ = — 2C,. It is useful, when comparing the
POCs of birefringence taken from different
references.

Let us note at this point that most of
accessible and reliable methods in piezo-optics
are based on the analysis of light passed through
a sample placed between two polarizers [1,9].
They are called as polarization-optical methods
[9] and allow for finding the retardation changes
oA, =6(An, -d,) induced by the stress oy,
where A4n;, and dy are the birefringence and
sample thickness in the direction of light
propagation k, respectively. Differentiating this
expression, we have

O\, =An,d, —An, A, . (74)

Inserting the expression for An from (73)

and the expression for od, =e,d, into (74) and

accounting the Hook’s law (17), we get

| -
oA, :_Eﬂkmamdk +8,,0,d,An, Of
_ 208 7. —2An.S, .  (75)
Gmdk

Introducing, by analogy with (73), the
notation in the Lh.s. of (75),

. 28,
T ==
Gmdk

(it is this coefficient that can be determined with

(76)

the polarization-optical method), we write (75)
in a more compact form:

.20,
Tim =~

+2An,S,;,, =

=, +2Mn, S

km *
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The physical meaning of 7y, is given by
(76): this is the coefficient that describes the
retardation change dAx induced by the stress Gy,
Therefore, we call the coefficient 7y, as the
POC of retardation.

The quantity 0Ax in (76) is related to the
thickness di. As a consequence, the units of the
coefficients 7%, and 7\, are the same. As a
rule, these are “brewsters” (1Br=10"% m?N).
The absolute POCs 7., considered in detail in
chapters 2 and 3 are just expressed in these
units. For the correct account for elasticity, the
coefficients Sy, should be transformed to the
units of 10™"* m*N.

In order to determine 7*,, on the basis of
xm or dA, from (77), it is necessary to take
correctly into account the signs of terms in the
r.h.s. of (77). Let us agree to attribute the sign
«t» to the natural Am and the corresponding
retardation Any-di. If the induced part SA
increases the absolute value of the retardation
Any-dy, the sign of 6A, would be «+», and vice
versa. For instance, we may place a quartz
wedge, with its indicatrix axes parallel to the
axes of the sample indicatrix, between the
polarizers (before or after the sample). If this
causes the interference extrema or the
photovoltaic signal measured after the analyzer
to change in the same direction, as under the
action of oy, then we attribute the sign «+» to
OA, etc. At the same time, we ascribe the sign
«—» to compressing stresses and the sign «+» to
tension stresses.

Such the method for determining the dAg
sign allows to determine distinctly the absolute
value of 7%, coefficients. Furthermore, we wish
that the coefficients 7%, determined on the
basis of (77), and 7%y, determined on the basis
of the absolute coefficients 7z, (from the
expression (72)), correlate with each other in
both the absolute value and sign. It is necessary
to use for this purpose the generalized rule for
the signs of dA, formulated in [20,22,23]. This is

especially urgent when 7*, is determined at the
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complicated experimental conditions (i, &,
m > 3). Then 7%, includes the contributions of
a large number of absolute POCs 7, (see
table 2). We do not describe this rule here,
instead referring the reader to the references
mentioned above.

We are to emphasize that accounting for
the elasticity in the process of determination of
POC of birefringence 7*,, is important because
of a large value of natural birefringence. If
Am=0 (isotropic bodies, cubic crystals and
isotropic directions in uniaxial and biaxial
crystals) or Am—0 (for most crystals with
Am<0,01), the contribution of the elastic term to
7' 18 equal to zero or does not exceed 2-5%
[23,24] (see formula (77)). This is less than the
typical accuracy of polarization-optical methods
(~10% [25,26]). With large values of Any
(~0,03-0,10), should be
taken Moreover,

the elastic term
necessarily into account.
sometimes o4, consists mainly of the elastic
contribution, while 7z*,, tends to zero. For
example, the values dA; and, correspondingly,
n™y, for triglucine sulphate crystals [27] in the
experimental geometry £=3, m=1 include about
91-100% of the elastic contribution. Thus, the
birefringence change An; and the “true”
coefficient 7*; are equal to zero. There also
happen the cases (see, e.g., [27]) when 7%y, and
the elastic contribution 2AnSy, are equal in
their absolute values. Then we conclude that
*m =0. However, it is in fact demonstrated in
[28] that the correct account for the signs of
different terms in (77) leads to the conclusion
that the POC 7*3;, exceeds approximately two
times 73, and 241555, .

Sometimes it is necessary to take care of
the signs of o4y and the elastic contribution,
even if An,—0. This is because Sy, can be large,
the “true” POC 7%,

contributions to 04y comparable. In other words,

small, while their

we should use carefully the expression (77) and
the law of signs for each anisotropic crystal.
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5.2. Determination of absolute POCs after

piezo-optic changes of retardation or
birefringence

The methods for determination of the
induced retardation o4, or the birefringence
oAn, are essentially easier than the
interferometric one. But they cannot be used to
POCs. The only

exceptions are the coefficients 75 for uniaxial

determine the absolute

crystals and =,, =7 =7, for cubic ones. Let
us demonstrate this.

It is easy to prove with the technique for
finding the eigenvalues and eigenvectors of a
rank-two material tensor (see chapter 2) that the
light polarization direction should be along the
pressure direction or perpendicular to the latter
direction and the light propagation one,
whenever the light propagates along the
principal axis Xj of the uniaxial crystal or along
one of the principal axes X; X; and X; of a
cubic crystal, and the uniaxial pressure is
applied perpendicular to the light ray. Then we
have /=6 or i=6for the polarization under the
experimental conditions £=3 and m=6 (fig. 1).

Let us write the changes in the refractive
indices, which cause the birefringence oJ4n;
along the direction £=3, under such the
conditions. We use the expressions for ong and
ong taken, e.g., from the relations for 7z in

tetragonal crystals (tables 2.5 and 2.6):

o 3
ong = —Z(ﬂ” + T+ T ),

o 3
on; = _Z(”n + Ty~ Tee)Hy
We obtain the expression

SAny = ng — on; = —%71’660 n’, (78)

enabling us to determine 7gs on the basis of the
measured birefringence. Multiplying both sides
of (78) by the thickness d;, we arrive at the
expression for determining 76 from the induced
retardation O4; (it is just measured in the
experiment):
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SA, = d,5An, = —%n%adwf (79)

or, with accounting for formula (76),
Tes = Tes I 1y (80)

In this case the POC of birefringence 744
and the POC of retardation 5 are equal,
because the natural birefringence An, =0 (see
(77)). The expression (80) is also correct for
cubic crystals (see the problem of determination
of Zgs =755 =74y)-

The literature in the field sometimes
erroneously includes the trivial relations like
T, =7y, /n; (and the analogous ones for 7ss,
7Tes) when the light propagates along the
directions 4(4_1), 5(3), 6(5) —see fig. 1, 4 and 7
for the monoclinic, rhombic or uniaxial crystals.
That is why we give some examples of such the
experimental conditions.

One can see from the experimental
conditions for the coefficients m4 and m4 and
the corresponding figure (see tables 2.3 and 2.4)
that the polarization is possible along /~1 and
=4, and m=4 or k=4 Basing on the appropriate
relations, we write the expressions for dn; and
ony, which are included in the birefringence
oAny :

o 3
ony = _Z(”lz + 75 TNy
o2

—_— X
4B, +B,)"”

X (T + 73 — Ty + 703y + 7033 = 2704y + 270 4y).

(81)

4 =

One can see that the induced birefringence
OA; = On; — on, is a complex combination of

seven POCs,
ma4= 731 = 0 (for monoclinic, rhombic, tetragonal

including the cases when
and hexagonal crystals). So the POE will
contain also the elastic contribution from the
combination coefficients Sy, (see the same
relations in tables 2.3 and 2.4).

Even in the case of cubic crystals, the light
propagation along the direction k=4(4_1) does not

allow to determine 4 on the basis of the

20

measured birefringence. For example, the
experimental conditions m=4 and k= 4 give the
possible polarizations directed along /=4 or /=1.
The expression for dns may be taken from table
2.9 (for the case of myy in cubic crystals), while
on; is the same as in formula (81) (here it is
taken into account that m4,=0 for the cubic
crystals). We have therefore:

OAn; = on; —on, =
1
= —Z(ﬂ'lz + 77,3 )om; +

1
+§(27z11 + 7T, + 75 +27r44)o7113 =

2wy, +74)= (7 +7T13)On3

8 a
Thus, the birefringence
could only yield in a combination of the

absolute POCs.

measurements

5.3. Induced anisotropy (symmetry lowering)
at the pressure operation

It is indicated in the monograph [1] that
F.Pockels “passed over in silence” the question
of principle: under external pressure applied to
crystal, the symmetry of the latter breaks off.
This means that the uniaxial crystal becomes
biaxial (if m #3), while a cubic crystal becomes
uniaxial or biaxial, depending on the specific
symmetry class and the direction of pressure. In
case of induced optical biaxiality in the cubic
crystals, the angle between the optical axes does
not depend on the o, value but on the pressure
direction only (see more details in [1]).

It is clear that the symmetry lowering
affects the Pockels” POC matrixes, and the
additional coefficients must appear there. This
should complicate determination of the initial
coefficients m,. Let us give a qualitative
estimation of this effect.

The influence of the “brought anisotropy”
on the accuracy of m, coefficients in the
uniaxial crystals can be estimated on the basis of
(33). If the natural birefringence dny is equal to
0.1 — 0.001, then the error of determination of

Tim On the basis of dn; amounts f = 0.01 — 1%
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(see (34)). It is understood that the value of the
induced parameter 0An, is comparable with on;
given by (16). Inserting the typical value
Zm = 3x10"* m*N (for o, = 10" N/m® or
100 kG/em®) into (16), we have the estimate
oni ~ oA ==5x107. If we use (33) and (34)
with A4m=0.01, the theoretical error dn'; (i.c., the
error of determination of 7,) is f=0.1%, and the
change in An, by the value of 5x10°~ leads to the
error changes due to dn'; (5x107/Any) as large as
B=5x10"" %. It is far outside the capability of a
real experiment. As a consequence, the
components of the POC matrix in the uniaxial
crystals can be calculated without accounting of
the induced anisotropy.

But in its essence, the question of
symmetry lowering under the external pressure
has been raised quite correctly. The effect is
accompanied by appearance of some new POCs,
whose value depends on a pressure value, and
this is called [29] as a “morphic” effect. It
itself
hydrostatic pressures, in the form of a nonlinear

manifests strikingly for the large
dependence of the POE characteristics on the
pressure [30-32]. However, these questions
overstep the limits of this review.

It is impossible to prove the scantiness of
specific m;, error under the symmetry break-off
in the cubic crystals on the basis of (33), since
An =0 there. So the only reliability criterion in
case of determination of 7, should be the POE
results themselves, i.e., the linearity mentioned
above. Any deviation from the linearity shows a
presence of the “morphic” effect. The size of the
non-linearity must be attributed to the error of

T which can be thus estimated in each

im 2
particular experiment. In order to obtain a less
“morphic” error, one has, of course, to apply

less pressures to the sample.

Conclusion

In this article we have presented a full enough
and consistent analysis of the methodology for

determination of all the absolute piezo-optical
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coefficients 7, for the crystals of all symmetry
classes, except for triclinic ones. Since the
triclinic crystals are rarely subjected to the
investigations and the volume of the article is
rather limited, the latter does not represent a
serious deficiency. We refer readers to the
works [3,18] where the POE in triclinic crystals
is described and the corresponding working
relations are cited. Table 2 gives the relations
enabling one to determine all the POCs of any
crystals with monoclinic or higher symmetry, by
means of interferometry methods and with
accounting for the elastic deformation. The
easiest way to account for the influence of
elastic deformation or remove it lies in using the
immersion—interferometric method described in
this work. We also present the formulae for
determining the absolute POCs on the basis of
the known rotations of indicatrix, birefringence
and retardation, induced by the uniaxial
pressure. In some cases they are very useful and
could provide more precise evaluation of the
POC than that based on interferometry methods.

Let us notice the following important point.
The ambiguity in the determination of sign and
absolute value (see chapter 3) is also typical for
the turning POCs,

determined from the

when the latter are

rotations of optical

indicatrix. The reason is impossibility to
introduce a criterion of positive (or negative)
rotation angles without fixing strictly the
crystal-physical axes. When the right coordinate
system is chosen unambiguously, a possibility
appears to formulate a sign rule for the pressure-
induced angles of the indicatrix rotation o,
based on the criterion of identity of the signs of
the turning POCs found both from 6#; and o;.
The author is grateful to Prof. R.O. Vlokh

and Dr. N.M. Demyanyshyn for valuable
discussions on the formulation of subject and the

account of conceptual questions of this article.
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Table 2. The working relations used to determine the absolute POCs by means of onc—pass
interferometers (lower sign af m,, and Sw., corresponds to experiment conditions within brackets)

Table 2.1. Monoklini¢ system
1 S 3

+ M
. oy || e TR E T g
2 - 15 k=2 Tis
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Table 2.2. Rhombic system

P N _ Ay + gy +Wqe + 74y + 27
3 I4 5 ;= n OAir.‘.)__\IIrE - =2 352 = .d3{4]+
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Table 2.3. Trigonal svstem {classes 3 and 3 )
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Table 2.4. Trigonal system (classes 32, 3m and 3m)
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y 14 k=4(4y | 74 |
m=4(4) +I(S,,+Ss3—544+2513) o -dg (n=1)
3 4 2 _ SA- = Ry + Ay T2y S
1 i=4(4) - 2 2B, + B)? EYey
14 k=4(4)| 7
! m(=l) (S +§ Sy o-d- (7\/5 -1
1z 13 F Qg g B + B,
3 A 2 SA =_J§’rll+”13¢”14+”31+”33¢2("TM¢”44)_0
' i=4(4) e 4B, + By e
14 k=1(4) FiRT) J_
1 — 1 2
m=4(4) +4(Su +85: -5, +285,) o d4m(m 1}
1,5 3 - A TR Ay F Ay T 55
. 4 . = A =-42 od- +
\ I :_5 (5) M= BT ‘J_ 4(B| +B})3f? 55
5 15 k=5(5)| =my
m=5(5) e {SH+S S5 +283)- 0 d, (7‘5 1
’ @ /B +B
1 T 85

Table 2.5. Tetragonal system (classes 4, 4 and 4/m}
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S
B +B;

-1
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Methods for the Studies of the Piezo-Optical Effect in Crystals and the Analysis of Experimental Data

Table 2.6. Tetragonal system (classes 422, 4mm, 4 2m and 4/mmm).

3 4 2 J—;r + Ty Ty T + 27
= S 13 31 33 4

. BEERIC) = 4(B, + B, G
Tt k=a(4) | |
m=4(4) LS, 48, 8, 128 ) 0-d, ( 2 0
4 11 3 44 13 4(4]m
2 6 1 N I TR Sk TP
' ~ i=6(6) B~ 4 T et
s18  k=6(6) | |
m=6{6) +Z(251|+2312_Sﬁo)‘6‘d6{6)(”1_1)
2 G 1 Ty +A.Ix
_ AL, =M T2 66 g
A i=s@ e | 4 TG
s~ 18 k=3
m=6 +8;-0-ds(n -1)

Table 2,7, Hexagonal system (classes 6, 6and 6/m),

3 4 2 i AT &4“]=_J§;r“+;r|3+7531+7§_3+2”4.1‘0__ wnt
: i=4(4) 4B, + B;)
-1 k=24 | Fm | 2
1 m=d@)| | S S iy
i=4; k=4;m 1B . oc-d;
) hAE:_ 2W[ﬂ'“+ﬂ'33+f"'f|3+3”3|+2(ﬂ|3+E44)+
45
o-d \/E
Ti6 | 2027y — 1))+ - L8, + S, — Sa +2(S,, +2S]3)]-{—+B—l)

| 3

. c-d
oA, ='\/EW[EH + A AT, 2, )+
2

s | 227, Jrf-rm)]Jr“"—df‘[sII 48— S +2S, +285,)] (—=——1)
8 B, + B,

3

s

Table 2.8. Hexagonal system (classses 622, 62m, 6mm and 6/mmm)

3 4 2 3 PR TR R N’
A =4 Mo 2 4B, + B,)"" 7
Tt k=a(ay| i

m=4(4) 1 _ od (=2 _
( #7050 4S5~ 8u +25,) -0 d4(4}(m )
Table 2.9. Cubic system

3 42 i 2r Ay Ry Y20, 3

A e B = s Oy
- 13 -
1 k=4(4)| 7 1

m=4(1) (St Sy =S4 T 280y 0 dg, O < 1)

3 4 2 2m,, ¥y ¥y 27
_ __=n PRIt BtttV AOR R
! _ i=4{4) | 7 dA, 8 o-d\n +
-1t k=1
1
m=4 +8;0-d (n 1)

Note: for cubic classes 432, 43m and m3m, Ty =R

Note for all tables: if in the formula near the sought for m, there is the sign “+” for direct and
symmetrical cxperiment conditions, that is, two formulac for &4, arc brought together in one, then
subtracting these formulae we obtain essentially simpler expression to determinate the sought for 7z, .
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