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Abstract

Value of the orbital angular momentum (OAM) of an optical beam can be determined
through the structure of matrix of its space-angle intensity moments. Considering the
properties of these moments and their transformations, a conclusion has been made that any
light beam with the OAM experiences a characteristic transverse shift during its interaction
with a plane refracting boundary or a diffraction grating. On this base, a method for the
immediate measurement of the beam OAM is proposed. The simple experimental
arrangement for such a measurement includes a self-collimating diffraction grating, a
position-sensitive quadrant photodetector and a device for the beam rotation around its

longitudinal axis.
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1. Introduction

The existence of an “orbital” (independent on
the state of polarisation) mechanical angular
momentum (OAM) is a general feature of light
beams with optical vortices [1,2]. Therefore, the
of the
important task. Measurement methods used so

measurement OAM composes an
far [3,4] employ the mechanical action of the
beam with OAM, exerted on miniature particles,
and their accuracy is rather low because of very
small absolute values of immediately measured
mechanical effects. Besides, such measurements
cannot separate contributions of "spin"
(stipulated by the circular polarisation) and
orbital angular momenta, as well as rotational
action caused by the "propeller effect". At the
same time, the detailed registration of the phase

and amplitude distribution over the beam cross-
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section, which would allow determining the
OAM in a "direct" way, is an extremely difficult
problem.

In this work, a new approach is proposed,
that is grounded on the straight determination of
the light beam spatial structure, responsible for
its OAM. Recently it has been shown [2] that
the presence of the OAM is immediately
reflected in the structure of matrix of the beam
space-angle intensity moments [5]. In its turn,
this structure affects the beam behaviour at its
interaction with a plane dispersive element (e.g.,
refracting boundaries or diffraction gratings)
[6,7]. This
transformations in the spatial shape of the

influence leads to certain
passed beam, but the most interesting fact is that

in some cases remarkable relations exist
between the moments and the values of well-

defined characteristics of the transformed beam,
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such as the position and direction of the beam
"centre of gravity". Due to these relations a
straight and simple measurement of the moment
matrix elements, including mixed space-angle
moments, becomes available [7]. A combination
of these ideas in application to beams with
OAM is the main subject of the present work.

2. Intensity moments and their
transformation

The matrix of second moments of the space-
angle intensity distribution (intensity moments)
was introduced for suitable characterisation of
the energy distribution over paraxial light beams
[5]. Generally, the 4x4 symmetric matrix of
intensity moments (usually represented through
four 2x2 blocks) can be defined as

M = (Mll M12J _
MZI M22
N
@ °\p
Here @ is the total energy flux (power) of

(M

X
the beam propagating along axis z, r =( j is
y

the column vector of transverse spatial co-

Py

ordinates, p =( Jzn? (n is the refraction
z

X

index) denotes the vector of spatial frequencies

(angular ray co-ordinates) [8], symbol ~
indicates a matrix transposition, (dr): dxdy,

and
1 r' « r'
I(r,p,z) = ? J.u(r +5,Zju (r —?,zj X
x exp|—ik(p - r")|(@r")

is the Wigner distribution function [9] of a light
beam with wavelength A =27z/k and the

ulr.z)

normalized so that ﬂu(r,zlz(dr)ztl). Initially,

complex amplitude  distribution

the moments, constituting matrix (1), were
considered without any connection to vortex
beams, but it was subsequently established
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[2,10] that the anti-symmetrical part of 2x2
matrices

my, m,,

Mn(z)=ﬁm(z)=(m” m] @
(off-diagonal blocks of the full moment
matrix (1)), can characterise the linear density of
the beam OAM A (the OAM of the radiation
contained within a unit length of the beam
"body"):

A =%(mxy - myx) 3)
where c is the light velocity.

This conclusion allows to employ the
powerful technique of the intensity moment
matrix and its transformations [5] in studying
the beams with OAM. Such possibilities arise in
the connection to the beam transformations
during its passage through plane dispersion
elements (PDE) — diffraction gratings or/and

refracting boundaries [6,7,11] (see Fig. 1).
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Fig. 1. General schematic of a PDE

Here N'N is the trace of a PDE plane
(boundary or grating plane), before and after
which homogeneous media with refraction indi-
ces n, and n, are situated; &, and 6, are an-
gles of incidence and diffraction, respectively
(in the case of reflection &, > 7[/ 2). The beam

propagates along axis z. The fracture of axis z
in the point of incidence O reflects the beam
deviation due to the refraction or diffraction and
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allows to use the model of paraxial beam propa-
gation [8] along its whole trajectory (both before
and after PDE); axis x is orthogonal to axis z
and y is orthogonal to the figure plane. The in-

put (before PDE) and output (after PDE) spatial
parameters of the beam relate to the input and
output reference planes [12] P; and P,, which
are normal to the input (output) segments of axis
z and intersect the PDE plane in point O.

In geometrical optics, the system of Fig. 1
executes a projective transformation, when the
output beam profile merely reproduces the input
one with possible scale change along axis x
[13]. It means that distributions of the beam
complex amplitude in the input reference plane
u,(r) and in the output one u,(r) are related by

the simple geometric transformation

uy(r)ocu,(Dr), where D is a certain
transformation matrix [6,13]. Therefore, an
arbitrary characteristic point of the input

distribution (r, in plane P;) has its counterpart

r, = ]3'1r1 in plane P, . Particularly, this is true

for the beam "centre of gravity" (CG)

r, = Jel(ep YY),

But the allowance for the diffraction in
PDE [6,7,11] reveals certain distortions of the
beam shape during its passage through the
system of Fig. 1. In consequence, the CG of the
output beam experiences a shift with respect to
the position predicted by the geometrical
consideration. And, what is the most important,
this shift appears to be dependent on the
elements of matrix (2) [7]:

1 4, tan @,
Ar, =-——DM,,D +
n, 0

1 ~, tan 6,
+—D™M,, + . @)
n, 0
+2]N)“M12f'—%]3“f”

This deviation of the CG position originates
from the fact of finite width of the angular
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spectrum of a spatially limited beam [6,7]. In
equation (4), f=f"+if ”:Vp[lnr(p)], where

r(p) is the “amplitude efficiency” of a plane

wave transformation accounting amplitude
changes upon the wave passing through the PDE
[6]. Therefore, the third and fourth terms
describe the role of variable PDE transmission
for different angular components of the beam
(note that in the earlier analysis [7] the
restriction f'=0 was implied, which now is
cancelled). The last term of (4) corresponds to
the effect whose nature is similar to known
Goos — Hinchen shift [14] and its magnitude
does not depend on the beam shape. But the
other ones provide connections to the OAM of

the considered beam.

3. Principle of the OAM measurement

In the most common case, when the PDE is
formed by a smooth refracting boundary or by a
grating with grooves normal to axis z, the

transformation matrix D equals to [7,11]

cosb, 0
D=| cos®, - (5)
0 1

Furthermore, it follows from the symmetry

considerations [7] that in this case z(p) is an

even function with respect to p, and,
consequently, f = [{;J Combining (2), (4) and

(5), one can easily find the Cartesian
components of the CG shift (4):
cosé,

1
2my fl——f1 ...
00501 ( mxxfx kfx) , (6)

_ ’
AyO - mxyvy + 2myxfx

Axy=m_ v, +

where

1 sind, cos@ 1
=—%——tan02...
n  cos” 6 n,

1 1 sin@
v, =—tanf -——>=
n, n, cosé,

X

. (7

It is seen from (6) that the existence of a
non-zero OAM (3) can only be manifested in the
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transverse (normal to the plane of incidence)

component of the CG shift Ay, . This feature is

favourable, permitting to distinguish the OAM
contribution from effects of different nature,
which produce longitudinal CG displacements.

Nevertheless, the '"substantial' (f,) and
"geometrical" (v, v, ) factors act, in general,

jointly, though differently, and can mask each
other in the course of measurements. Therefore,
situations, where the results will be
unambiguous, should be looked for.

reflection

In the case of specular

(6,=7-6,, n,=n,), the geometrical factors

vanish (v, =v, =0), and the CG shift, predicted

by formulae (6), (7), is fully conditioned by £,

that is, by the optical properties of the contacting
media. In this case, possible longitudinal (within
the plane of incidence) beam displacement

Ax, =k~ f!'—2m__f! consists of two parts. The

first part is associated with variations of the
reflection coefficient phase and is identical to
the Goos — Hénchen shift, the second one is
conditioned by the angle dispersion of the
absolute value of reflection. Although the latter

carries, through m__, certain dependence on the

beam structure, it has no connection with the
OAM.
A transverse shift of CG Ay, =2m  f] can

also appear in this case. A special example of
this effect, dealing with circular Laguere-
Gaussian (LG) beams, has been predicted
recently [15,16];
shows its relation to the general theory of the

the present consideration

beam transformations in the PDE and reveals a
especial role of the beam OAM. Due to the

dependence on m __, this shift can be used, in

yx?
principle, for measurements of the OAM linear
density (3). At the same time, strong influence
of the

multiplier f, puts its own restriction and

X

media's properties, expressed by

makes corresponding measurement possibilities
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rather poor.

Meanwhile, the special peculiarities of a
PDE geometry provide, in general, much larger
variety of potential measurement advantages.
Even upon the refraction at a smooth surface

(n;sin@, =n,sin@,) the geometrical factors

differ from zero:
2
v = 1 tané), [ ’
n, cosé, cosd, n,

2
v, =itan¢9l 1—(ﬂJ ,

m n,

and the CG shift, stipulated by the first and
second terms of (4), exists and can be measured.
However, it becomes the most noticeable in case
of self-collimating reflection from an oblique
grating (0, =6, + 7). Adopting for the
simplicity n, =n, =1 in (7), we will get in this
situation
v, =-v, =2tan6,

and under quite possible condition of grazing
incidence (tand, S 10), a high enough CG shift

can be observed [7]. The use of the reflecting
echelle gratings [17] is especially suitable
because, in the usual mode of operation, the
input beam approaches normally the facets of
grooves, which corresponds to the condition
f. =0 [7]. Therefore, the results of the shift

measurements appear to be free from the

"substantial" influence and allow to determine

the moment matrix elements unambiguously:
Ax, =—-2m tan@,,

Ay, =2m,, tan 6, . ®)

Also, the case of a self-collimating grating
is suitable for the visual demonstration of the
nature of the considered beam shift, at least in
its "geometrical" part (see Fig.2). In this
situation, the input and output reference planes
Py, P, coincide and form the common reference
plane. Within this plane, the trace of the input
beam, propagating to the right (along the axis z
which is not shown in Fig. 2), is denoted by the

Ukr. J. Phys. Opt. V3. N4
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Fig. 2. The nature of the beam transverse shift
at the self-collimating reflection

dashed circle A. The grating plane is inclined,
and the beam trace B in this plane has
approximately an elliptical shape. If the beam
has the helical wave front (which is a typical
feature of beams carrying OAM), the energy
flux possesses a certain vortex transverse
component. For example, the energy, localised
near some point 1 of the input beam cross
section, propagates with some deviation to the
side of positive y, while the energy from point 2
will deviate in the opposite transverse direction.
Further, between the reference plane and the
grating, the energy propagates along the straight
rays, which are reflected in the points of
intersection with the grating. The reflection is
self-collimating in xz plane and specular in zy
plane. Hence, the energy which was initially
localized at point 1, in the output beam will be
localised near point 1', with some transverse
shift Ay,, and the energy from point 2 will be
transferred to point 2' with corresponding shift —
Ay,. Since the distance between the reference
plane and the grating is higher for point 1 than
for point 2, the inequality Ay; > Ay, takes place.
Obviously, the same consideration can be made
for all pairs of diametrically opposite points of
the input beam cross section, and for every small
portion of the beam energy, which is shifted to
the positive y (from the upper half of the
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section) there the equivalent portion, will be
found which is shifted to negative y, but to a
minor degree. As a result, the whole profile of
the reflected beam is effectively “displaced” in
the y direction.

4. Scheme of the OAM measurement

Turning back to the measurement problems, we
should note that, following to (6) — (8), the CG
shift measurements can be used for the

determination of only one moment m_, , which,

generally, gives no access to the beam OAM via
(2) and (3). The value of m  should also be

measured. For this purpose, the properties of the
moment matrix transformations [5] will be
expedient. For example, if the beam complex
amplitude distribution is transformed in accord
of the law

u(r)— u(Tr) 9
with 2x2 transformation matrix T, the moment
matrix (2) experiences the modification
M,, > M|, =TM,,T". In particular, we can

require that

’ ’
M. = My My, _ m, —my, .
12 — ' ' - ’
myx myy mxy mxx

such a transformation corresponds to the
reciprocal substitution of co-ordinates x and y

and is described by the matrix

T=40 ! (10)
2 o)

Obviously, in the same conditions, the shift

Ay, for the transformed beam will be

proportional to m., = m, , which will allow to

yx
determine the lacking matrix element m  of the

initial beam. By the way, it is worthwhile to

remark that each of the moments m, m

»

depends on the choice of co-ordinate axes, but

their difference is, of course, invariant [5].
Therefore, the measurement of the beam

OAM would be completed if two experimental
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problems are solved: determining the transverse
shift of the beam CG and transforming the beam
according to the transformation matrix (10). Let
us begin with the second one and consider the
physical implementation of the transformation
required. One can easily see that it can be
obtained combining the reflection and rotation
of the initial beam profile, and several ways to
perform this are available. In our work, it was
realised by means of an optical system
analogous to the mode converter, recently
proposed for the LG and Hermite-Gaussian
mode conversion [18] (Fig. 3). In this device,
flat mirrors M1 and M3 are semitransparent,
which allows to split an input beam into two
arms and to have different beam structures at the
output, depending on which channel, 1 or 2 (or
both), is open. All the mirrors M1, M2 and M3
are parallel to axis y', lying in the xy plane,

and are aggregated in a hard construction that
can rotate, as a whole, around axis z.

At firsting, consider the beam passed the
channel 2; let its complex amplitude distribution
at the input of the measuring unit 5 be u(r).
Then, if the same input beam passes the channel
1, its profile near the measuring unit will accept
the form (9) with the transformation matrix [19]

T2 —c0s20@ -—sin20
_(—smzca c0s20 J

where © is the angle between axes y and y',

i.e. the angle of rotation of the mirror system
relatively to the co-ordinate frame that was
initially chosen within the beam cross-section.
This transformation matrix has the required
form (10) at @ =+7/4.

The most appropriate scheme of the
measuring unit 5 contains a self-collimating
diffraction grating as a main element (Fig. 4). In
this situation, the grating groves are parallel to
y axis (normal to the figure plane), which

ensures the conditions for the applicability of
equations (8). Really, it is the grooves that
determine the choice of initial co-ordinate axes,
and their orientation dictates the orientation of
all other parts of the measuring device,
especially of the mirror system in Fig. 3. The
scatterer 9 provides the diffuse "broadening" of
the beam, which enables to measure the CG
position directly by means of a quadrant
photodetector [20]; of course, the use of
advanced beam analysers [21] is also possible.

In general case, two beams fall upon the
photodetector (par excellence, of the quadrant
type with quadrants oriented in accordance to
axes x, y) sensitive area: one reflected by the

grating (whose transverse shift, properly, should
be measured) and one reflected by the mirror 8
(the reference beam). The last one serves for the

X
4
O / > 5
y /// V4
Y
/, y 12

Fig. 3. Schematic of the mode converter: 1, 2 — arms (channels of the beam passage),
3 — movable shutter, 4 — output beam, 5 — measuring unit.
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10

View A

Fig. 4. Structure of the measuring unit (numeration in Fig. 3 is continued): 3 — shutters,
4 — analysed beam, 6 — grating, 7 — light splitter, 8 — flat mirror, 9 — diffuse scatterer,
10 — position-sensitive photodetector, whose light-sensitive area is depicted in separate
view A (the actual beam deformation is not shown and only its shift is indicated

schematically).

if the
incoming beam 4 carries no OAM, both spots on

system alignment and calibration:

the photodetector window must coincide (more

exactly, they must experience the same
transverse shift of CG).
In the course of the measurement

procedure, at first, the channel 1 is locked by the
shutter 3 (Fig. 3). Consequently, only the beam
with the initial (non-transformed) structure
reaches the measuring unit. Then the mirror 8
and the grating 6 are screened alternatively by
their shutters, and in both cases the
photodetector

signals are registered; their

difference is just proportional to the transverse

shift Ay, of the beam, reflected by the grating.
Hence, through the second equation (8), m,, is

determined. Afterwards, the channel 1 is being
opened and the channel 2 becomes locked, so
that only the transformed beam can reach the
unit 5; then, the same manipulations again give
the value of CG shift that now is proportional to

m, . Finally, the total OAM of the beam is
found by the formula (3).

5. The case of a circular LG mode

These techniques may be farther developed and
simplified in application to circular LG beams

Ukr. J. Phys. Opt. V3. N4

[1,22]. In this case, matrix (2) is antisymmetric
(this follows from the definition of the intensity
moments (1) and, e.g., from the results of
Appendix A in Ref. 5). It means, foremost, that
m,_. =0 and, due to (6), Ax, oc £ ; therefore, in
the case of self-collimating reflecting grating,
when f=0 (see Section 3), such a beam
experiences only a transverse (y-directed) shift.

Secondly, m,, =-m,,

and the simple appli-
cation of formulae (3), (6) and (8) directly gives

2 2
AyozAz%vy:A%tanal. (11)
Thus, if an LG beam is diffracted by a
grating, its CG undergoes the transverse
displacement whose magnitude is proportional
to the linear density of the OAM A.
Remembering that for an LG beam with
azimuthal index /

A=1 22 =1 /1CI)2
kc 2rc
(see, e.g., [1,2]), one can represent the result
(11) in the form
Ay, =lﬁvy :étanel. (12)
Due to relations (11), (12) the investigation
of the OAM of an LG beam is a simpler task, in
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comparison with the general case, because the
manipulations with the transformed beam are
not necessary. In this circumstance, the whole
measurement can be completed using only one
of the two possible channels for the beam
passage in Fig. 3. But properties of the mode
converter structure [18] provide some additional
experimental possibilities. Two following
demonstrations seem to be rather attractive:

1. If the input beam, entering the optical system
in Fig. 3, has the LG structure, then,
depending on which channel, 1 or 2, it passes,
the spirality [1,2] (i.e., the mode index /) of
the output beam 4 will change its sign.
Therefore, toggling the channels of the beam
passage alternatively, the photodetector will
generate an AC signal whose magnitude is
proportional to the beam OAM.

2. If the input beam has the Hermite-Gaussian
structure and is properly orientated with

respect to axes x, ), and both channels are

open, then the beam 4 will carry an OAM with
magnitude depending on the phase shift

between the channels [18]. Consequently, by
changing this phase with a phase corrector,
placed in one of the channels (e.g., 2 in Fig.2)
and without other changes in the system, one
can observe the modulation of the
photodetector signal synchronously with the

modulation of the output beam OAM.

6. Conclusion

The direct relation between the OAM of an

optical beam and its moment matrix,
demonstrated in this work, allowed to include
the OAM concept into the well developed
scheme [23] of a laser beam characterisation by
the second space-angle intensity moments with
all the accompanying benefits: commercially
In this

context, a conclusion about the CG shift,

available equipment, software, etc.

appearing when a light beam with OAM
propagates through a PDE, is only the first step
and we hope that further applications of this
scheme will bring new helpful prospects.
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OAM
measurement method, proposed in this paper, is

The main advantage of the
that the whole procedure is completely optical

one, with no unreliable mechanical
transformation, and it allows the wuse of
advanced means of the beam measurement and
characterisation. In comparison with the top
achievements [24], the experimental
arrangement for the OAM measurement,
described in the present work, may seem not so
much elaborated, but it has obvious practical
profits. The self-collimating scheme supplies
simple and exact means for the comparative
measurement of the beam distortion at the
diffraction grating, the use of a quadrant
photodetector with a diffuse beam scatterer
provides easy way for the CG position
measurement without complicated numerical
processing, and the mode converter executes
necessary beam transformation in the most
natural manner. This set-up contains no movable
parts (except mode of operation switches) and
does not require microscopic observations; it
allows simple adjustment and re-arrangement
and can be supplemented by modern beam
analysers with corresponding software.

Finally, it should be emphasised that
throughout the paper a scalar wave
approximation was used; for electromagnetic
waves it is proved if the beam plane polarisation
properly agrees with a PDE geometry and does
not change during the beam transformations [7].
If this condition does not hold and some
elliptical polarisation appears, an additional, so
called “spin-dependent” [16] beam shift may
take place (see, e.g., [25-28] and references
affect the OAM

measurements to some extent. Nevertheless, this

therein), which can
influence is not crucial and can be avoided.
Firstly, the spin-dependent shift normally does
not exceed some parts of the light wavelength
while the OAM contribution can be much more
[16] (for example, it is quite possible to have
tand, ~10 in Eq. (12)); besides, the OAM-

stipulated effect can be multiplied for beams

Ukr. J. Phys. Opt. V3. N4
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with high OAM (in Eq. (12) this corresponds to
/>1) while the spin-dependent one cannot.

Secondly, the latter can be removed at all if the

incident beam polarisation is strictly parallel or

orthogonal to the incidence plane [16,17] (in the
case of diffraction grating this means that the

beam polarisation parallel or orthogonal to

grooves should be maintained).
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