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Abstract

The peculiarities of dimensioning regular fractals through measuring power spectra of the
diffracted optical radiation field are discussed. It is shown on the example of one-
dimensional Cantor set that asymmetrization of the fractal structure leads to modifications
of the corresponding Fraunhofer diffractal, which nevertheless preserves its global
symmetry. For that, the slope of the amplitude spectrum represented in a log-log scale is
invariant in respect to the asymmetry coefficient applied to the fractal structure, being
directly associated with the fractal dimension of the object.
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1. Introduction

Optical techniques for investigation of the
fractals, i.e. objects possessing structural self-
similarity under scale changing and non-integer
to high
operation speed and their non-contact (non-
destructive) nature [1]. Thus, the
diagnostic parameter such as fractal dimension

dimension, are attractive owing

main

can be estimated from the slope of a power
spectrum of the diffracted radiation field
represented in log-log scale and known as a
power law [2]. Optical dimensioning of a fractal
object is reduced to Fourier transformation of
the object’s boundary field (by a free-space
layer of sufficient extent or, more often, using a
Fourier-transform lens [3]), and measuring of
spatial intensity distribution (equivalently:
power spectrum or the
Fourier-spectrum  modulus) at
diffraction region.

squared complex
Fraunhofer

Numerous investigations in the field of
Fractal Optics concerning artificially prepared
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deterministic (perfect) fractals [1,2,4] whose
properties are known in advance being pre-
determined by the construction algorithm. On
the other hand, most of real (natural) fractals are
certain randomized and

to a extent,

asymmetrical being at the same time
characterized by a complicated structure of the
edges of structural elements. It has been found
[1] that the direct dimensioning of the fractal
objects on the power law is possible in the case
of random fractals only. In contrast,
dimensioning of a regular fractal through
intensity  distribution at the Fraunhofer

diffraction region is problematic. To our
knowledge, the cause of the mentioned problem

has not been elucidated up to now.

Our previous investigation of the optical
fields produced by diffraction of a probing
radiation at the fractal objects (kind of Koch
curves transformed by smoothing or enhancing
of the structural element edges) show [5] that
such fields possess the properties connected
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with a self-similarity of the structures of
interest. Besides, in the paper [6] we studied
which  had
undergone transformation by displacement of
the edges (and, as a consequence, the «centers
of mass») of the structural elements, i.e.
transparent bars, for the specified magnitudes of

one-dimensional Cantor sets

the asymmetry coefficient. It has been shown, in
part, that in the near (Fresnel) diffraction region
the magnitude of the asymmetry coefficient of
the diffracted field intensity distribution is close
to the magnitude of this coefficient at the
boundary object field, whereas in the far
(Fraunhofer) diffraction region the magnitude of
the asymmetry coefficient approaches zero; in
diffractal s
symmetrizied. It means that a power law is
inapplicable for object’s
asymmetry. At the same time, another question

other words, Fraunhofer

determining  the

is left without an adequate answer: is the
object’s fractality reflected in a power law of the
asymmetrizied fractal? In other words: can one
determine the object’s fractal dimension using a
power law irrespective of the object asymmetry?
A theoretical solution of this problem meets
difficulties both  of
computational nature and interpretation. In
particular, there is no common opinion as to
considering an asymmetrical fractal as the

with  considerable

monofractal, which is completely characterized
by the unique non-integer dimension, or as the
multifractal, which is characterized by a set of
non-integer dimensions or so-called spectrum of
singularities [4].

In this paper we describe the procedure of
dimensioning of perfect and regularly
transformed one-dimensional Cantor sets from
experimentally obtained power law and discuss
the results using an analogy of a Cantor set with

a diffraction grating.

2. Experimental procedure

The Cantor set of the third level is used as the
object. The perfect (symmetrical) Cantor pre-
fractal is asymmetrizied using the algorithm
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introduced in Ref.6. Namely, the coordinates y
of the transformed fractal correspond to the
coordinates X of the perfect fractal by the rule
y=x""*, where k is the asymmetry coefficient
(k=0

transformation). Note that the

corresponds to  the  identity
maximal
coefficients realized in our
those used in [6]

approximately by one order of magnitude:

asymmetry
experiment exceed
k=1.5 against £ =0.2. Thus, strongly deformed
fractals, are studied.

The experimental samples with the

desirable magnitudes of an asymmetry
coefficient shown in figure 1 are prepared in the
following manner. The perfect and the
transformed fractals are obtained by means of
computer simulation and printed on 44 format
paper using a laser printer. The obtained
amplitude fractals are photocopied using a low-
contrast film ORWO, whose contrast coefficient
y=~1, and resolving power (up to 300
lines/mm) provides perfect reproduction of the
edges of the fractal structural elements. Thus, an
amplitude transmittance of the film samples
directly corresponds to the amplitude Cantor
sets. The width and the height of the fractals
used in our experiment are 5.7 mm and 27 mm,
respectively.

An optical set-up for recording the
Fraunhofer diffractals shown in figure 2 is the
same as the set-up realized in Ref.2. The beam
of He-Ne laser radiation (A=0.6328 um,

power P=50mW) is focused by the

microscopic objective (20*) and filtered by a
pinhole of 28 gm —diam. The quasi-point
source, PS, formed in such a manner is
transformed into the quasi-linear source, LS,
using a cylindrical lens CL. A quasi-linear
source is 1imaged by the objective O
( f =40 mm) into the plane RP. The fractal F is

placed between the objective O and the plane
RP and uniformly illuminated by the converging
wave whose cross-section greatly exceeds the
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(b)
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Fig. 1. Experimental samples: the perfect - k=0 (a), and the asymmetric - k=0.5 (b), k=1 (c), and k=1.5
(d) Cantor sets.

width of the input fractal aperture. It is well - the probing beam is modulated by the input

known [3], that such positioning of the object aperture along one spatial coordinate only;

possesses important advances: - aperture limitations along the bars of the
@] F(FG) RP
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Fig. 2. Arrangement for a hologram recording: its top view (a) and side view (b). L - He-Ne laser, PS -
quasi-point source (microscopic objective and a diaphragm as the spatial filter), CL - cylindrical lens,
LS - quasi-linear source, O - objective, F (FG) - fractal (or fractalogram), RP - registration plane.
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Cantor set are absent: the experiment is
implemented with a true one-dimensional
fractal;

- power of the probing radiation is used in the
most efficient manner;

- the effects of spatial-frequency filtering are
avoided;

- the scale of a power spectrum and
autocorrelation image of the input signal is
controlled in the simplest manner.

A power spectrum (actually, Fraunhofer
diffractal that is equal to the referenceless
Fraunhofer frac-talogram [7]) is recorded at
Russian amplitude holographic photoplate VRL
developed in developer D-19. Note that in this
experiment we provide «soft» (relatively cold
and long-duration) developing. It permits to
avoid the influence of the effects of nonlinear
holographic recording [8] on the results of
measurement.

Further, replacing a fractal F (see figure 2)
by its fractalogram FG, we obtain an
autocorrelation image of the studied fractal at
the plane RP as the Fourier transform from a
power spectrum, in agreement with the Wiener-
Khintchine theorem. The distances from the
objective O to the plane RP and from the input

aperture  to  the
L,=1.32-10’mm and

same plane are

L, =10 mm,
respectively.

The set-up shown in figure 2 is also used
for measuring the intensity distribution within
the central (self-similar [3]) areas of the
corresponding power spectrum and
autocorrelation image of the perfect fractal and
the transformed ones. In this case, a holographic
photoplate at the plane RP is replaced by a
photodetector (in our experiment by a
photomultiplier, PMP). The PMP is mounted on
the cross-head, which is rotated about the origin
of coordinates of the input plane and moves
perpendicularly to the main optical axis of a
coherent-optical processor as well as to the

Cantor bars. A slit diaphragm of the width
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~100 gm is placed just before a PMP. Much
exceeding (by 160 times, approximately) the
wavelength of the probing radiation, such a
diaphragm does not cause any polarization
effects and, consequently, does not influence the
measurement results. Its role is reduced to
diminishing the noise and providing desirable
angular resolution when the actual intensity
distribution is measured. Under the wavelength
and geometrical conditions of our experiment, a
slit width is twice narrowed in respect to the
studied diffraction
an angular

minimal period of the
pattern. For that, uncertainty
associated with the finite (non-vanishing) width
of the analyzed diaphragm is 10™ rad, and the

angular uncertainty associated with the finite

width of the primary source PS is
L,=16- 10~ rad. Thus, the resulting
uncertainty of the diffraction angle is

00~26-10"rad  (<1.5-10%deg)  that

corresponds to the spectral resolution

A=350/A~4.1-10" mm ™" . The last estimation

characterizes resolution of two wave vectors
associated with the corresponding components
of the Fourier expansion of the input signal
realized in our experiment, being equal to the
best parameters presented in literature [2,4].

The width of the analyzed area is the same
for all studied fractals. Its warranty covers the
central (self-similar) domain whose extension is
determined by the fractal level. As all the
studied objects are of the same level, the
maximal diffraction angle where intensity of the

field is 1.5-10%rad, which
provides separate measuring up to 57 intensity
mentioned o66. The

distinguishing feature of optical power spectra

measured 1S

magnitudes for the

and autocorrelation images of the Cantor set
consists of a large modulation percentage of the
spatial intensity distribution. That is why we use
the calibrated neutral attenuators just in front of
the analyzing slit to provide measurement
linearity over all range of the measured intensity
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magnitudes. The number and multiplicity of the
used attenuators are taken into account under
experimental data processing.

3. Qualitative visual analysis

The experimentally obtained power spectra of
the perfect fractal and the transformed ones, i.e.
referenceless Fraunhofer

fractalograms, are

shown in figure 3. A power spectrum of the
3(2))

conventionally divided into two domain: one of

perfect fractal (Figure may be

them is the central («inner») domain of
relatively high intensity possessing a structural
self-similarity, and the other is the peripheral
(«outer») domain of relatively low intensity
possessing a periodical structure. Indeed, three
clearly separated sets of spectral components are
observed within the «inner» domain, and each
set can be divided into three parts consisting, in
turn, of three lines. As it is well known [2],
finiteness of the self-similar domain is caused

by the finite level of the corresponding pre-

1 '{
|
1

il

(a)

-MIr

fractal. The obvious triadic structure of a self-
similar domain of a power spectrum is the direct
consequence of the constructing algorithm for a
Cantor set.

Power spectra of all transformed fractals
(Figure 3(b)-(d)) have complicated intensity
distributions in comparison with a power
spectrum of the perfect fractal. As a result, it is
difficult to divide such spectra in to the above
mentioned typical domains. The number of
spectral components and intensity
the

smoothed out. The presence of the common

grows,
distribution at diffraction pattern is
spectral component corresponding to the first
diffraction maximum in the periodical domain
of power spectrum of the perfect fractal is
explained as the consequence of equal width of
all studied samples. As the magnitude of an
of the

fractals grows, the width of the central domain

asymmetry coefficient transformed

grows also which follows from the diminishing
of the minimal width of some structural

Fig. 3. Power spectra of the perfect (a) and transformed (b) to (d) Cantor sets. Asymmetry coefficient
magnitudes are the same as in the corresponding fragments of figure 1.
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elements of the input aperture.

Autocorrelation images of the studied
fractals are shown in figure 4. An
autocorrelation image of the perfect fractal
(Figure 4(a)) is characterized by the existence of
clearly separated diffraction maxima within the
periodical domain without any observable
features of structural self-similarity within the
central domain. Similarly to the corresponding
power spectra, autocorrelation images of the
asymmetrizied fractals (Figure 4(b)-(d)) are of
complicated structure being characterized by
more rapid decreasing of intensity with increa-
se of spatial frequency in comparison with an
autocorrelation image of the perfect fractal.
Triadic structure of the fractal is not reflected
directly in its  autocorrelation  image
irrespectively to the magnitude of the
asymmetry coefficient. In contrast to the
corresponding power spectrum, the width of the
central domain of an autocorrelation image
decreases as the magnitude of the asymmetry
coefficient increases. Thus naturally follows
from the method of obtaining an autocorrelation

|l
|

Fig. 4. Autocorrelation images of the perfect (a)

1
T

image as well as from the well known properties
of optical Fourier transform [3]. Note that all
power spectra and autocorrelation images shown
in figures 3 and 4 are globally symmetrical
irrespective of the magnitude of the asymmetry
coefficient characterizing the input signal.

4. Measurement results

The measured spectra of the perfect and
asymmetrizied Cantor sets are shown in log-log
scale in figure 5. The magnitudes of amplitude
(left scale) and intensity (right scale) of the
diffraction maxima normalized on the forward-
diffracted wave amplitude and intensity,
respectively, are shown by the spots. The
experimental spots in the two mentioned
representations coincide with each other owing
to the matched scale transforming (square
rooting) of the imaged dependence. The solid
and the dashed straight lines are the

approximating dependencies 1/I(q)~([D and

1 (q)~q_D, respectively, where ¢ is the

spatial frequency. For the triadic Cantor set

(b)

|
11

(d)

and transformed (b) to (d) Cantor sets. Asymmetry

coefficient magnitudes are the same as in the corresponding fragments of figure 1.
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Fig. 5. Experimentally found dependencies log\/?(logq) and logl(logq) for spectra of the perfect
(a) and asymmetrical (b) to (d) fractals. Solid and dashed curves correspond to the slope of D in

scales \/7 and / , respectively.

D=1n2/In3~0.6309 [2]. Both dependencies

are presented for the central (self-similar)
domain of the Fraunhofer diffractal.

The conclusions following from the results
shown in figure 5 are:

1. The

log\ﬁ (logq) directly corresponds to the

slope of the dependence

theoretically predicted dimension for the perfect
fractal: the number of experimental spots above
the solid line is the same as the number of spots
under this line. This conclusion has been also
verified by

applying a least squares

approximation technique. For that, the
discrepancy between the slope of the theoretical
dependence and the optimal approximation of
experimental data does not exceed 5%.

2. The dependence log](logq) is not

applicable for direct dimensioning of the perfect
fractal in agreement with the conclusions of
Ref.2. It has been found that the dependence of
intensity of the Fraunhofer diffractal on spatial

Ukr. J. Phys. Opt. V3. Na2

frequency is fitted by the interrelation

1 (q) ~ q_(z_D) within the error inherent to the
approximation -// (q) ~ q_D (5%).
fg)~q" s

applicable for the same extent for dimensioning

3. Approximation

both the perfect fractals and the asymmetrical
ones, as it is seen from figure 5. It is remarkable
that the reliability of such approximation even
increases when the magnitude of the asymmetry
coefficient grows.

4. Outside the limits of self-similar domain
of the diffractal

dependence [1] [ (q)~q"l is realized (it is not

Fraunhofer the trivial

shown in figure 5).

The autocorrelation images of the perfect
and asymmetrizied fractals are obtained through
Fourier transformation of the corresponding
spectra. The

power experimentally found

amplitude and intensity distributions into

autocorrelation images are shown in log-log
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Fig. 6. Experimentally found dependencies logﬁ(logq) and log[(logq) for autocorrelation
functions of the perfect (a) and asymmetrical (b) to (d) fractals. Solid and dashed curves correspond to

the slope of D in scales \/7 and [ , respectively.

scale in figure 6. The slope of the dependencies
of intensity distributions on spatial frequency
within the central domain is close to the slope of
the dashed line, ~(2— D), and the slope of the

dependencies of the amplitude distribution on
spatial frequency within this domain turns out to
be close to D (solid line). However, the
discrepancy between the slope of the optimal
approximation of the amplitude distribution and
dimension D occurs considerably larger both
for the perfect fractal and the asymmetrizied
ones than the discrepancy between the optimal
approximation of the experimental data and the

dependence q_D for the corresponding spectra,
being now within the limits from 15% (for
k=0.5)1t030% (for £=1.5).

It follows from the presented results that
deterministic fractals (both simmetrical and
asymmetrical) can be dimensioned from the
slope of the dependence log\ﬁ (logq), whereas
reconstruction of autocorrelation images of the
fractals through optical Fourier transformation
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of the amplitude transmittance of referenceless

Fraunhofer fractalograms turns out to be
redundant being neither necessary nor efficient

means for the dimensioning of fractal objects.

5. Discussion

In paper [2], one of the initial studies devoted to

fractal objects dimensioning through
measurements at the field of radiation diffracted
by such objects, it is established that fractal
dimension may be found on the slope of the
envelope of the amplitude Fourier spectrum, i.e.
the dependence of Fourier-amplitude of the field
on spatial frequency represented in the log-log
scale. But the experimental results [2], in part
for the Cantor set, are shown for another
dependence, namely for the intensity of the
Fraunhofer diffractal against spatial frequency.

The approximation of the measured power

spectrum by the dependence q_D represented

in Ref.2 is far from the optimal one. Our attempt
to find the approximating dependence for
experimental data [2] has shown that the fitting

Ukr. J. Phys. Opt. V3. Na2
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curve is a parabola rather than a straight line as
it is predicted by the theory derived in Ref.2. At
the same time, the approach proposed in Ref.2
occurs to be quite adequate being applied to
random fractals, in part to so-called diffusion-
limited aggregates [4,9]. Besides, it follows
from the results of Ref.10 that randomization of
the fractal structure leads to a decreasing of the
discrepancy among the theoretical and
experimental results on fractal dimensioning.
Let us note that various averaging techniques
discussed in [1] are not substantionally
grounded being in essence only empirical fitting
procedures, and, moreover, are not applicable to
one-dimensional fractal kind of Cantor sets
studied in our paper. From the paper [1], it is
regarded as agreed-upon that the procedure of
the estimation of fractal dimension on the power
law is efficient only for random fractals.

Inapplicability of a power law for
estimating D is also illustrated by our results
(see dashed lines in figure 5). But at the same
time we show the possibility for direct
dimensioning of regular fractals on the slope of
the dependence of the amplitude Fourier
spectrum. Let us explain here the
considerations, which led us to the necessity of
taking the square root of the power spectrum of
radiation diffracted by the perfect (or regularly
transformed) fractal for the dimensioning of
fractals on the optical experiment data. The
reasons expounded below are close to those
presented in [11] where the difference between
autocorrelation images of deterministic input
signals (kind of a diffraction aperture) and
diffuse ones is considered.

The perfect Cantor set is none other than
the regular grating with the «omitted» (on
specific rule) transparent elements. If so, the use
of the theory of diffraction gratings seems to be
the simplest and the most convincing way for
discussing the above mentioned problem.

The origin of any main diffraction
maximum results from an in-phase addition (in

the corresponding direction or in the correspon-

Ukr. J. Phys. Opt. V3. Na2

ding point) of partial cylindrical waves propa-

gating from various transparent elements of the

grating. The resulting field amplitude, 4, for
the specified conditions of observation is the
sum of the partial amplitudes: A ~ N, where

N is the number of grating periods; thus, the

resulting field intensity is / = 4* ~ N*.

Let us now consider the result of grating
randomization. Such a randomization may be
implemented in two ways:

- phase randomization of the boundary object
field due to usage of a diffused;

- random displacements of the edges (as a
consequence, random displacements of the
«centers of mass» of the grating structural
elements), i.e. deformation of the grating
elements.

The last case is actual within the context of
our study. In accordance with the shift theorem
of Fourier analysis [6], the directions on the
main diffraction maxima are unchanged, and the
shift of the signal at the spatial domain causes
the corresponding linear (in the case under
shift at the
frequency domain. In the limiting case when the

consideration, random) phase

phase shifts are distributed uniformly within the
interval from 0 to 27 , the resulting intensity of
the main diffraction maximum occurs (in
agreement with Ref.12, section 42a) to be equal
to the number of partial pixels of the input
signal, I ~N. Thus, infensity of the main
diffraction maximum of the randomized grating
(including the fractal one) obeys the same law
as amplitude of the corresponding maximum in
the case of regular grating. This conclusion
highlights the fact that the envelope of the
distribution at the
Fourier-transformation

intensity  frequency

randomized  fractal
coincides with the envelope of the amplitude
frequency amplitude distribution of the Fourier-
transformation of the deterministic (symmetrical
or asymmetrizied, i.e. regularly transformed)
fractal. Indeed

- the conclusion of Ref.2 regarding the
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possibility of fractal object dimensioning on
Fourier-spectrum of the diffracting field is
justified in practice when the magnitude of

D is estimated directly on the measured

intensity distribution at a far field of a
random fractal;

- estimating the magnitude of D for regular
fractal is mediated by the procedure of
finding the amplitude Fourier-spectrum of
the object field in its power spectrum.

Let us note that at considerable (by N -
times) decreasing of intensity at the main
which
randomization of a regular fractal, the total

diffraction  maxima, accompanies
energy of the diffracted radiation is unchanged.
This can be easily shown within the framework
of the Young-Rubinowicz model of diffraction
phenomena [13-15] where the diffraction field is
computed as the sum of the geometrical optics
wave and the edge diffraction wave. The
geometrical optics wave is defined within the
directly illuminated area only, i.e. within the
central diffraction maximum of a far-field
[7. An
transmittance of the asymmetrizied fractal (due

diffraction pattern increase of
to the increase of a whole area of the transparent
elements (see figure 1), leads to the increase of
the intensity of the central diffraction maximum
only. At the same time, the number of the
structural elements of the transformed fractals is
the same as one in the initial regular fractal.
Thus, the total energy of the partial edge
diffraction waves is conserved.

It is clear that the decrease of intensity of
the main diffraction maxima is accompanied by
the increase of a diffuse component. Namely,
now the light comes to the areas of a far-field
pattern, which earlier were «dark» ones. Of
course, the partial signals are added in intensity
within these areas. The structure of the
transformed Fraunhofer diffractal is enriched
with the new elements that does not affect the
structure of the spectrum envelope. The last

conclusion is illustrated, in part (for the case of
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the regularly transformed perfect fractal), in
figures 3 and 5, being quite in agreement with
the results [10] showing that randomization of
Koch fractal
evolution of self-similar Fraunhofer diffractal to

two-dimensional causes the

the random speckle-pattern.

6. Conclusions

The following conclusions follow from the
above described study.

1. Dimensioning of the determinate regular
fractals through measurement of the angular
intensity distribution of radiation diffracted by
such fractals is possible and presumes the
amplitude spectrum of the scattered radiation to
be found,
(represented in log-log scale) corresponds to the

the envelope slope of whom
dimension of the object.

Even for considerable magnitudes of an
asymmetry coefficient (up to £=1.5), the slope
of an optimal approximation of experimental da-
ta differs from the theoretically predicted fractal
dimension less than by 5% that approximately
coincides with the measurement error.

2. As the fractal is asymmetrizied, the
observed features of structural self-similarity of
the object in a far-field diffraction pattern are
gradually smoothed. Nevertheless, the slope of

the envelope of the dependence log\ﬁ (logq)

found from the measured intensity at Fraunhofer
diffractal occurs to be invariant against changes
of the asymmetry coefficient of the object. This
slope can be used as the diagnostic parameter.
For that, the described procedure is sufficient
both for revealing the object fractality of the
object and for dimensioning asymmetric
fractals, being at the same time inadequate for
estimating the coefficient of asymmetry due to
global symmetry of a far-field diffraction
pattern.

3. At last, the results of our study show that
the asymmetrizied Cantor fractal remains a
mono-fractal characterized by unique fractal

dimension.
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