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Abstract

The present review is devoted to the optical vortex behavior both in free space and optical
fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed
on the base of the operator of the spin — orbit interaction in order to forecast the possible
ways of manufacturing the vortex preserving fibers and their applications in supersensitive
optical devices.
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I. Historical Introduction the rainbow — the most amazing optical effect as

it had been showed by Airy in 1830 s manifests

Diversity of natural wave phenomena as a rule is itself as a result of the ray’s contact with some

associated with events of birth, death and imaginary surface - a caustic (see, for instance,

evolution of optical singularities. In particularly, the work [1] and references to it). At the ray’s
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caustic, the field intensity is infinitely large.
Airy in his wave theory had revealed that there
is finite value of intensity due to the light
diffraction. At present Berry and Nye have
recognized and given the mathematical
substantiation (see, for instance, the work [2]
and references to it) to the fact that the caustic
has a fine wave structure and consists of the
constellation of phase singularities — the
wavefront dislocations.

The other astonishing optical phenomenon
also discovered first by Airy [3] is the forming
of anomalous rings near the lens focal plane. A
detailed consideration of this effect, first
realized by Ignatovskii in 1919 [4], had brought
to light an interesting fact — an energy flow near
the anomalous ring can have opposite
propagation direction in free space with respect
to the initial one. It seemed that the fundamental
theoretical study of this phenomenon developed
by Richards and Wolf [5] in 1959, Wolf [6] and
Boivin, Dow, Wolf [7] in 1967 had totally
concluded this topic. However, Carter in 1973
[8] revealed on the base of computer simulation
that the rings could appear and disappear due to
very slight perturbations of the light beam.
Subsequently, the experimental developments
by Karman et. al. [9] and the theoretical study
by Berry [10], Nye [11], Volyar et. al. [12,13]
showed that the anomalous rings or the ring
wavefront dislocations accompany propagation
of any nonparaxial laser beam. Besides
variations of the beam’s parameters cause
dislocation reactions — chains of birth and death
events of wavefront singularities. More recently
Soskin, Vasnetsov and Pas’ko [14] have
represented the main properties of the ring and
edge dislocations as a spatial motion of the
transverse optical vortices — the elementary cells
bearing phase singularities and as an example of
axis optical vortices (pure screw dislocations)
Soskin and Vasnetsov [22] experimentally and
theoretically displayed a partial recovery of the
vortex properties after a larger portion of a

singular beam had been truncated by any

70

obstacle. In fact, the wave vortices are inherent
to any wave phenomena both of classic and
quantum nature, from Aharonov — Bohm effect
[15,16] to oil bubbles on a frying pan, being the
brightest example of self-organization effects,
and from the Dirac monopole [17] to the giant
universe eddies as a consequence of the big
bang. As a rule, the vortex propagation and its
transformation are characterized by Berry’s
phase [18] — the most lucid demonstration of the
topological nature of the vortices. The vortex
prehistory emerges due to an evolution of this
phase that in turn can also prophesy a
subsequent vortex behavior.

A great deal of monographs and review
papers have been published on the optical
vortices problem by the end of 20" century,
among them the comprehensive work by Nye on
the fine structure of optical singularities [2]; the
“catastrophe” analysis of optical phenomena by
Wright [19], some important aspects of optical
[20]; the
optical vortex solitons in nonlinear media by

vortices by Vasnetsov and Staliunas

Kivshar and Pelinovsky [21], principles of
singular optics [22] by Soskin and Vasnetsov.
The important property of the optical vortices to
carry over the angular momentum in free space
was elucidated in detail by Allen, Pedgett,
Babiker [23] and Barnet, Allen [42].

We would like to emphasize that the branch
of physical and quantum optics studying the
evolution of optical vortices and their derivation
in various optical systems has acquired the name
“Singular Optics” after M. Soskin’s suggestion
in 1999 [24]. Now this new discipline embraces
a great deal of linear and nonlinear unusual
optical phenomena including the processes
cavity [25],
dislocation reactions in evanescent waves [10-

inside  laser subwavelength
13], singular fiber optics [26,27], computer —
generated holography [28,29] and many others.
In the given paper we shall restrict our
review to singular fiber optics. The aim of our
paper is to briefly elucidate the main problems
of singular optics of free space or homogeneous
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isotropic media in order to discuss the most
arduous topic of vortex behavior in guiding
nonhomogeneous media.

I1. Optical Vortices in Free Space

As a rule, the optical vortices cannot exist in
free space. They are born and annihilated either
inside a laser cavity [30] due to special
introcavity gadgets or at the expense of
diffraction processes on computer generated
holograms [20,31], optical wedges [32] and
other optical obstacles. Nevertheless, the main
properties of a vortex generated by a laser or
some way else are simpler to study as fast as it
propagates through free space.

I1.1 Ring Edge Dislocations

Any light scattering process somehow or other is
connected with birth and annihilation events of
phase singularities — wavefront dislocations
[33]. However, a lifetime or lifelength of a given
singularity is characterized by a kind of a
medium inhomogeneity. Some dislocations may
disappear near the optical obstacle but others
together with the light beam propagate rather
far. In the given section we consider a special
type of singularities appearing and disappearing
not far from an optical system enough to give
birth to them. As early as the 19" century Airy
drew attention [3] to the strange bright and dark
rings forming in the vicinity of the focal plane of
a microscope. Afterwards these patterns, called
the anomalous Airy’s rings, were considered by
Wolf et. al. [5,6,7] in detail, but they were
interpreted as the ring edge wavefront
dislocations [9.10,11] only at the end of the 20"
century. These phase singularities are born near
a focal plane due to the light diffraction of a
circular pupil of a microobjective and fast
annihilated far from it. It is interesting to note
that the ring dislocations are formed in
nonparaxial Gaussian beams if one takes into
account only plane waves with the real values of
wave vectors cutting off evanescent waves [8].
In this case the anomalous rings are the result of
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the interference of the paraxial Gaussian beam
and the diffracted part of the evanescent field
[10]. At the same time, the ring dislocations also
exist in the untruncated nonparaxial light beam
near its waist [12,13, 34]. The fact is that the
evanescent waves appear at the flexure vicinity
of the light beam in free space [35], and it is the
result of their interference that creates the ring
edge wavefront dislocations. Let us consider this
problem in detail [36].

The solutions of the scalar Kirchhof’s
equation:

(V2 +k2)®(x,y.2)=0, 2.1)

(¥ is the wave function, k is the wavenumber
in free space) is symmetrically relative to the x,
y, z coordinates while the light beam has a
singled-out z-direction. This difficulty can be
overcome if one introduces the complex-valued
distance R with the z-coordinate assuming
imaginary values [37]:

Rz\/x2—i—yz—i-(z+izo)2 , (2.2)

where z, = kp?/2 is the Rayleigh length, p is

the waist radius at z=0. In this case the

solution of eq.(1) for the light beams has the
form:

N/
T(x,y,z):l:z[";fyj PO(cosd);, (kR)» (2.3)

where j, (kR) is a spherical m-th order Bessel

function of the first kind, P,,(f)(cosﬁ) is an

associated
cos@=(z+iz,)/R. The

Legendre polynomial,

solution  (2.3)
represents both nonparaxial and paraxial light
beams. In order to see it one demands to hold

true the following

r=yx*+y? <<z,.

Then R~ (z +iz, {1 +

inequality:  kz, >>1,

2

r
—— | and the
2(2 +iz, )2 j

solution (2.3) is transformed for m = 0 into the

well-known paraxial wave function [38]:
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exp(_ pT()J explikc)

where o(z)=1+iz/z,. The transition from

, 2.4)

€q.(2.3) to the paraxial form for high-order light
beams is more involved (see, for instance,
[34,39]) since it is fulfilled within a narrow
range of axial lengths near or far from a focal
plane.

At the same time, the ring dislocations are
positioned far from the optical axis where
Indeed, the

Fig.1a,b shows the calculated picture of the

r>z, at a focal plane z=0.

intensity distribution of the paraxial and
nonparaxial lowest order (/=m=0) light
beam.

The primary energy flow located near the
optical axis is spanned with alternated dark and
bright rings so that the ring’s radii are larger

than the Rayleigh length 7 > z, . The location of
the dark rings is [33]:
Re[¥(x,y,2)|=0, Im[¥(x,y,2)]=0. (2.5)

Fig.1 Fundamental mode beam [/=m=0,
kz, =1: (a) the paraxial, (b) scalar nonparaxial

and (c) the vector nonparaxial intensity
distribution; (d) the photograph of the focal spot

after the 90 microobjective and (e) the singular
lines P, (x,y,O): 0 of the y-polarized
nonparaxial beam.
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It means that the wavefront dislocation
manifests itself at such places only where the
real and imaginary parts of the wave function
simultaneously vanish. Each of the above
equations represents a surface in a space. The
intersection of these surfaces makes up the space
trajectory of the wavefront dislocation. In our
case from eq.(2.3) we obtain the following

expression: j,(kR)= sin(&R) =0 which leads to:
x;+y;=z§+”;—f,z=0. 2.7)
This equation characterizes the

circumference family situated on the waist plane
with the center at the optical axis.

Fig.2a depicts the typical pattern of the
constant phase lines for a single dislocation on
the x-z plane. Each phase line starts from an
upper singular point and comes to the end at the
lower one. Generally speaking the wave
dislocation can be defined in terms of an integral
around a circuit that contains within an isolated

dislocation line [33]:
4dq>=2xm, 2.8)
where the integer / is the winding number or

the topological charge and x =1 is its sign. In
our case the dislocation propagates along a

Fig.2 The equal phase lines (a) and Poynting
vector trajectories (b) of the lowest-orde

[=m=0, kz, =1 nonparaxial light beam.
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closed curve and the sign of its charge depends
on the observer position [40].

In order to find the trajectories along which
the energy flow propagates it is necessary to
make use of the following expression [3]:
P oc|‘P|2 V®, where P is the Poynting vector,
@ is the total phase of the wave function W,
while the directional vector of the energy flow is
Vo/ |Vd>| . In our case the total phase is

tan® =1/ tan(acosg)tanh(asing), (2.9)
a:#(rz +2° —zé)2 +4z% 2},

¢ = 1 arctan| —— |- 1 arctan| —— |. In the
2 r—2z, 2 r+z,

vicinity of the dislocation point one finds:
tan® ~agp/sin(a). Due to the shift of

where

coordinates origin to the point 7, (see eq.(2.7)) :

r=r,+&, (& is the displacement relative to

the 7, point) the expression (2.9) is
. zy z
transformed into @, ~ 2aO =,a,=r,-1z,.

m

The components of the Poynting vector are
P cl/&, P x —z/£*. The trajectories of the

energy flow can be found from the equation:

dé  d . .
—SK:—Z. Then the energy flow is transmitted
L

near the dislocation points along the closed
curves: x>+ y* =const. Fig.2b illustrates the

more exact computer calculation of the Poynting
vector trajectories. The energy circulation is
divided from the main flow by the separatrix
line passing through the saddle point S marked
on Fig.2a with a white circle.

The determination of the ring thickness is a
detached problem. The fact is that we cannot
determine the ring sizes from eq. (2.8) because it
gives the zeros of the wave function but not the
energy flow. The ring thickness can be found
from the requirement of vanishing of the vector
Poynting z-component:

P.(x,7,0)cc e, —eh; =0. The use of the
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expression P oc|‘{J|2 V@ for the nonparaxial case

is not correct.

To define the electric and magnetic field
components we shall consider the wave function
W =sin(kR)/kR as the field potential and take

advantage of the expressions [12]:
e=VxVx(Q¥,)-ikVx(n¥,)

, (210
h=—VeVxVx(n¥,)-iskVx(n¥,) 210

where n is the basic vector. The choice of the
potentials {¥,,¥,} may be confined within two

cases: {¥,0} and {0,%}. While the analysis of

the fields has been discussed in detail in the
works [11,12,36] we cite here the main results in
the form of the distinctive curves. Fig.le depicts
the intensity distribution of the linearly
polarized light beam at the waist plane. The
beam form experiences some deformation along
the direction of the electrical vector. Together
with it the singularity lines are also subjected to
some distortions. The typical singular lines
deformation illustrated by Fig.1 points out the
essential  polarization-dependent  structure
reconstruction. Fist of all, it is necessary to
remember that these singular lines are formed by
the z-component of the Poynting vector

P.(x,7,0)=0 and therefore only one branch is
consistent with the requirement: ¥(x,,0)=0.

Secondly, the distance between two neighboring
lines is equal to the ring thickness. However,
this thickness changes along the ring in contrast
to the consequences from the scalar approach. In
the interval between the two lines the Poynting
vector has the opposite direction relative to the
initial one as it is represented on the Fig.2b. But
the two singular lines collapse in the direction
secant to the optical axis and perpendicular to
the electrical vector. Thus the energy flow
circulation at these places degenerates into the
cuspidal point (the cusp on the current line) is
located on the singular curve [11]. Estimations
give the mean thickness of the ring up to
0.3um at the waist plane z=0 and about

0.8 um along the longitudinal direction.
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Presented above the whirl of the energy
flow and phase lines near the edge dislocations
have enabled Berry [1] to compare this process
with a vortex on the surface of slowly flowing
water in a river. Soskin and Vasnetsov have cal-
led that process the tramsverse optical vortex
[22]. Indeed, the energy circulation around the
ring dislocations of the nonparaxial light beam
conforms to the set of the toroidal optical vorti-
ces of an irregular form suspended at the focal
plane. Any slight perturbation of the beam tears
away these vortices from the maternal, dwelling
forcing them to die and to be born anew being
transmitted together with the light flow.

I1.2 Pure Screw Dislocations

The exact solutions of the Maxwell’s equations
also contain the fields carrying over the second
kind wavefront dislocations, which play an
important role in the optical science. Being first
revealed in scalar fields by Nye and Berry [33]
and adopted by them as the pure screw
dislocations, these field defects became the
genuine matrix of the whole singular optics.

Let us consider the wave solution (2.4) of
the scalar wave equation (2.1) in the paraxial
approximation: kz, >>1, r <<z,. This field has
a wavefront surface in the form:

2

O(r,p,z)= hz————+

2R(z)
(l+1)arctani+l(0= const , (2.11).
2
R(Z) _ 22 + Zg

z
The basic part of the expression rewritten

as kz + 1@ = const represents the straight helix
with the /-branches. The path-tracing around the
optical axis over the helix surface varies the
wave phase to 2z . Therefore the distance
between two neighbouring helix petals is equal
to one wavelength 1.

Fig.3 shows the wavefront with the phase
singularity. Because ¢ = arctan(y/ x), the phase

of the field is undefined on the optical axis:
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x=y=0 but the field amplitude has vanished

there as well. That singular point is called the
pure screw dislocation by analogy with the
screw defect in crystals [33] (in detail this
analogy is considered in the work [22]). As it
can be seen on Fig.3a, the phase is circulates
around the optical axis. That seeming phase
circulation is reflected both in the spiral
interference pattern (depicted by Fig.3e or the
fork-like interference pattern as it is shown on
Fig 3d) and the real energy whirl. The Laguerre-
Gaussian beam (2.4) can carry the angular
momentum of light [23,41,42], and though the
energy flows along the straight lines located on
the surface of one sheet hyperboloid, its
projections on the cross-section plane form the
@ -component of the Poynting vector and,
consequently, causes the z-component of the
angular momentum [43]. These electromagnetic
fields with pure screw dislocations are often
called axial optical vortices [22] or simply

.
b

optical vortices.

-~

i

Fig. 3. Axial optical vortex: (a) the helical wave-
front and intensity distributions in the paraxial
Laguerre-Gaussian (b) and nonparaxial Legen-
dre-Gaussian (c) beams. The interference pat-
tern as a result of the sum of a paraxial beam
bearing the optical vortex and a fundamental
Gaussian beam transmitting at some angle (d)
and along the same optical axis (e).
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As a rule the nonparaxial light beam bears
both the axial optical vortex and the toroidal
optical vortices as it is depicted on Fig.3e.

I1.3 Angular Momentum of Paraxial
Optical Vortices

Light beams can carry both energy and
momentum. As early as 1908 Poynting, showed
by use of a mechanical analogy, that circularly
polarized light should exert a torque per unit
area on a quarter-wave birefringence plate, equal
to k times the light energy per unit volume
[23]. Naturally, rotation of a light field around
the nodal line produces the vortex that bears an

angular momentum. As the Poynting vector
P= 1/2Re(ExH*) is perpendicular to a wave

front surface PocV® and the wave front
surface of the vortex has a helicoidal shape, the
cooperative effect of all Poynting vector lines
orbital momentum

produces an angular

L, =i<‘P|8/8(p|‘I’> at a given cross-section of
the beam. At the same time, since the light beam
has always a certain polarization state, it must be
possessed of the spin of angular momentum [44]
S, :<‘~I’|&Z|‘~P>, where &, is Pauli matrix. A
total angular momentum represents the sum of
the spin and orbit momenta:
M,=L,+S, [23]. In order to show this, one

angular

considers the paraxial optical vortex in the form
(2.4) and writes the Poynting vector components
[ 43]:

__" e
i aLE
_olyp olod¥f
L B v et
P =|¥?|.

The local angular momentum is

m,=(rxP) /c* = r P, while the total angular

momentum is defined as M, = LmzdS. Then

one obtains the important relationship:

Ukr. J. Phys. Opt. V3. Na2

V4

¢ pas o

M _I+o

describing the angular momentum per one
photon. This expression points out the fact that
the total angular momentum is the superposition
of the spin and orbital angular momenta:

M, =(¥|l,+6.|¥).
Using the Poynting vector components one

can make up the current lines of the energy
flow: dr/P, =rdp/F,, dr/P =dz/P. The

physical sense has only those current trajectories
which satisfy the requirement of the light ray. In
accordance with the quantum conception of the
light rays [104,105], a light ray propagates along
the trajectory where the wave function intensity
is maximum |‘I’(rmax )LGax . The trajectories of the
energy flow is a set of straight lines lying on the
Q= Karctan(z/ z(()ma")),

hyperbolic  surface:

K=+, r’ =p§1ax[1+(z/z(()max))2]

illustrates the straight line trajectories pertaining

Fig.4

to the set with the positive sign of the
topological charge x =+1. The opposite sign of
the charge x =—1 forms the mirrored line set.
Not only straight lines but other trajectory forms
(spirals, for instance as it was presented in the
work [41,106]) that disagree with physical
reality of the light propagation in free space.

At the same time, the Poynting vector in the
region of the maximum energy flow is not

dependant on the polarization state (in

Fig.4. Schematic representation of the straight
energy flow trajectories in an optical vortex with
K=+1.
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particular, o) but only on the topological

charge P, ock/. Since a paraxial vortex state
|O',Kl> in free space is characterized only by

one number — a topological charge: |Kl>

neglects its polarization that entirely conforms
to the paraxial approximation of the Poynting
vector [3].

Although the polarization state is the
important characteristic of the paraxial beam, it
cannot influence the forming of the vortex state.

I1.4 Conversion of Optical Vortices

The singular beam with specific orbital angular
momentum transmitted through some lens
optical systems can be transformed into another
beam with a different orbital angular
momentum.

In particularly, the beam conversion often
takes place at the expense of astigmatic optical
elements [28, 45] causing the beam distortion
and reproducing (or, vice versa, taking away)
some share of the angular momentum. The most
vivid instance of such mode conversion is the
beam passing through the cylindrical lens [45].

The upper and lower fork-like interference
patterns point out the topological charge
inversion.

Let, for example, the superposition of two
beams

lower-order Hermite-Gaussian

(HGy, + HG,,)  with the degenerated edge

dislocation directed at angle of 45° relative to
x-axis pass in series through two cylindrical
lenses with the same focus length f, =/, =f
and positioned at the distance / from other. The
astigmatic HG,, and HG,, mode beams gain

different Gouy phases. The phase difference
depends on both the focus length f and

distance % between lenses. When the distance is
h=A+2 f the phase difference is 7/2 and the

Hermite-Gaussian beam changes into a

Laguerre-Gaussian beam with /=1 or the

optical vortex. The sign (plus or minus) of the
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vortex topological charge is defined by the slope
angle of the degenerated edge dislocation
(+45° or —45°). When the optical vortex with
[ =+1

Gaussian beam LG, ) passes through such a

the topological charge (Laguerre-

mode converter its topological charge changes
into the opposite /=-1, provided that the
distance between lenses is h=2f.

Thus, the evolution of the paraxial singular
beam in the astigmatic optical system is
characterized by transformation of the angular
momentum at the expense of differences in the
Gouy phase respondent for the optical distortion.
Conversion problems of high-order modes in the
astigmatic systems are considered in the works
[46,47].

However, a completely different type of
situation occurs in propagation of a nonparaxial
singular beam through free space. Now the state
polarization, or in our case, the helicity o takes
part in the forming of the vortex state. This can
be seen on the example of a combined
nonparaxial mode beam consisting of even and

[

kz

[l

Fig.5. The self-conversion of the transverse and
axial vortices and the self-inversion of the axial
vortex topological charge in the combined even
and odd circularly polarized nonparaxial singular

beams with [ =1, kz, =3.
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odd vortices. The fact is that the even and odd
nonparaxial beams have different fopological
phases [48] which have harsh variations as the
beam approaches to its waist or moves off it.

The typical picture of the transformation of
shown on Fig.5 [12]
situation. The

the beam structure
elucidates the nonparaxial

combined singular beam consists of two
circularly polarized even and odd beams bearing
the axial optical vortices with / =+1. Near the
waist a linear pure edge dislocation (the
transversal optical vortex) begins to be formed
here which transforms into the axial vortex but
with the topological charge ! =—1far from the
focal plane. The change of the topological
charge sign x or the helicity o far from the
focal plane manifests itself as the rotation of the
transverse vortex axis at the waist. The paraxial
analog of this effect is studied in the work [49].
It should be expected that the self-inversion of
the topological charge and the self~conversion
between the transverse and axial vortices are the
generic effects for most of nonparaxial wave

processes.

IL.5 Optical Vortex Generation

The problem of the creation of high-quality
optical vortices is the most important one for
practical work with singular beams. By the end
of the century a whole series of original ways of
the optical vortex generation, both by intro laser
cavity and on the basis of the computer-
generated holograms placed on the laser beam
way (see, for example the works [20,22,30,50]
and the references to them) was worked out.

¥(x,y,z)= Ko

{GXP[— iA k(Az—;zy)} exP(ikh)el’f{ ik x

where A=(n, -1)1ga, w? = p? |0(zl2 ,

= arg[a(z)]: arctgi , h — the height of the
Zo

Ukr. J. Phys. Opt. V3. Na2

The most prevalent and convenient method of
constructing vortex masks at present uses
computer-generated holography [51-54], which
has the advantages of rapid and inexpensive pro-
duction, simple fabrication steps and adequate
phase control. However, the energy-diffractive
efficiency of this method is very low (1-5%). At
the same time, recently, a completely unexpec-
ted high-energy-effective way of vortex creation
has been revealed on the basis of the laser beam
diffraction by an optical wedge [55-57].

Let us consider briefly this method in
accordance with the work [58]. The light
diffraction on the edge of the optical wedge
positioned on the beam path, as it is shown on
Fig.6, causes the formation of the optical vortex

Eé_,/

Z

Fig.6. Schematic representation of the optical
wedge

at the far field. One part of the beam passes
through the wedge while the other propagates in
free space. The calculation with the help of the
diffractional Kirchhof’s integral shows that the
field far from the waist plane has the following
form:

. 2, .2
Ziexp[— 2il"]exp{— al +2y }x

w
(2.12),

mask substrate, & — the angle of the wedge. In

general the equation (2.12) describes the
vortex’s lace illustrated by Fig.7c. The each
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generic vortex of the lace is characterized with
level lines of constant intensity. Near the vortex
center the level lines gain an elliptic form. In or-
der to estimate the line form one takes advan-
tage of the stereographic projection properties.
The wave function (2.12) at the vicinity of the
generic vortex center can be rewritten as

\Pr o (x/ yl)é%

=’ y)é[;}

a1 eyfkzy [BB+i1-aB)])
=y )Z( kzy AB(a+ib) J
B= exp(AszO),

(2.13)

where exp(ikh)=a+ib,

¢ =~/2/7 . The column vector 3 similar to the
Jones’s vector in the polarization optics [61]
enables us to make up the stereographic
projection in the form:

L, =1

: (2.14)

Ly=i(3,3,-3,3)) =
2¢XB(a—-B)

32(02 +X2)+cz(1—2aB)

X =4kzy A
The ellipticity degree will be equal to the
unity provided that (c+X )exp(— X? ): c,
a=+x1,b=0. The
correspond to the circular form of the level lines.

It means that if the height of the mask substrate
is h=mA, m=123,.. and X =-0,8525, that

is the radius of the beam waist at the wedge

obtained conditions
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0 0.1 0.2 0.3 0.4
p

Fig.7. The experimental (the black points)
and theoretical (the solid curve) results on
the generic optical vortex: the dependency
of the vortex ellipticity O on the beam waist
L (at the center); the intensity distributions
of the wedge-generated optical vortex
maximum ellipticity — (a) theory Q... =1,
(b) experiment Q... =0.93, (c) the lace of
the generic optical vortices; the wedge’s
angle a=~2-10°pad and its height
h~3927714, 1=0.6328um, n=1,51.

plane is p(}pt:(O,SSZSﬁ)m(gj, then

the generic optical vortex gains an ideal form
(Fig.7a,b).

It should be noted that the z-component of
the orbital angular momentum is calculated as

L, =1<T|%|T> is equal to L. = L;. In fact,

we can experimentally measure the value of the
orbital momentum of the generic optical vortex
by means of measuring the ellipse semiaxes a
and b since tan y =b/a and sin2y =S,. The
cusp-like curve of the generic optical vortex
ellipticity measured both experimentally and
theoretically is illustrated by Fig.7 (at the
center).

If the energy-effectiveness 77 of the generic

optical vortex is estimated as the ratio of the
total field intensity to the vortex intensity at the
level 0.05, then the 7

value obtained

Ukr. J. Phys. Opt. V3. Na2
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experimentally is 0.95 which is rather a good
result for the constructing of technical devices
on the base of optical vortices.

I11. Fiber Optical Vortices

We find the first report on the vortical nature of
fiber field radiation in the paper by Zel’dovich,
Baranova and Mamaeyev [60] in which they
theoretically and experimentally studied the
fork-like interference structure of the scattering
laser field, picking out the screw and edge phase
dislocations. Later on Zel’dovich and others in
the work [61] revealed the filtration method of a
single pure screw dislocation. In 1996 Volyar
and Fadeyeva (see, for instance, the works
[62,63] and references to them) noticed the fact
that the optical vortices are the form of the
existence of guiding fiber modes and described
their main properties. Volostnikov and others
studied field evolution and singularities conver-
sion in the liquid-wire parabolic waveguide in
the paper [64]. The fine structure of singular
beams scattered from dielectric stripe wave-
guides and other random-inhomogeneous media
have been considered in the works [65,66].

Just as in free space the optical vortices in a
fiber are characterized both by the topological
charge / and helicity o but here they are not
These
connected with each

independent. physical values are
other in a fiber
inhomogeneous medium by means of the spin —
orbit interaction [67,68]. It is this effect that
determines the evolution peculiarities of the
guiding vortices in the optical fibers [13]. For
the first time this problem evoked by Zel’dovich
and others in the works [69-71,101] has received
further development in the work [72]. Using this
method enables the authors of the papers [78,79]
to bring to light the generic vortical processes in
perturbed optical fibers and forecast the ways of
the vortex preserving [80] and recovering [81] in
complex fiber-optical systems.

Let us consider some aspects of the vortex

transmitting through the single optical fibers.

Ukr. J. Phys. Opt. V3. Na2

II1.1 Eigen Guided Vortices of Ideal
Optical Fibers: Base Conception
Let the straight optical fiber have a refractive

index of a core n, and a clad n, so that

n’ —n’ ~2n,An and An=n, —n, >0. Such
a fiber, typical for the optical region, is called
the weakly guiding fiber. Further we shall use
only such a type of fiber based on the approach
by Snyder and Love [82].

IT1.1.1 Degenerated Case

Waves in inhomogeneous media are described

by the vector wave equation:

2
V’E - nz(x,y,z)a—i2
ot 3.1
+ V[E -Vinn® (x,y,z)]zO

Since we shall consider only
E=E exp(i [ t)

transmitted through a perfect straight optical

monochromatic waves

fiber with a refractive index »n = n(x, y) where
the transmission fulfilled:
E-= e(x,y)exp(-ifiz) (B is a propagation

constant), the wave equation (3.1) for the

invariance 18

transverse components e t(x’ y) can be rewritten

in the form [82]:
2 2 2
(Vt +n”(x,y) k jet

+Vt(et -thnnz(x,y)): ﬁzet
while the

(3.2)
longitudinal component e, is

determined from the expression:

e ~ év,e, . (3.3)

Such approximation is quite justified for
the weakly guided fibers: n., ~n, with the

n*(R)=nZ,[1-24 £(R)],
R=r/p, p is fiber radius, r>=x"+y7,
A~(n,-n,)/n,, f(R) is a form of the

refractive index profile.

refractive index

In the null approximation we disregard the
second term in eq.(3.2) and transform this
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equation into:
(vtz +n2(x,y)k2)3t =p%,.  (34)
The latter expression being the equation for
eigenvalues E : of the operator
H 0 =V7i+ nz(x, y)k2 presents the degenerate
lifted by the

perturbation operator I—Alint as it will be shown

case. The degeneracy is

later on, so that

Et (x’y)_> Et (X,y)+ 561 (xay), ﬂ - ﬁ + 5ﬂ .
Nevertheless, the degenerate case enables us to
degenerate of the

E,m and define the

eigenfunction spectrum ¢, . The eigenfunction of

calculate the “levels”

propagation  constant
the eq.(3.4) can be represented in the circular
polarized basic ¢° =X+ioy, where X and y
are the unit vectors, in the form

& r0)=¢ F(R)explixlp), (3.5
where the radial function E(R) is defined by

the equation:
d*> 1d 1* ~, _,
—t————+U" -7 , V) F, =0,3.6
{dRz RdR R> fly)(Fi =0.3.6)
V =kpn,~2A -the waveguide parameter, U -
the waveguide parameter of a core.
In our paper we shall mainly deal with step-

fibers: f(R)=0,0<RrR<1 and
f(R)=1,1< R <0, though the results obtained

index

can be extended for an arbitrary profile f (R)
The eigenvalues ﬁ[m are defined by the

dispersion equation [82]:

JW) T kW)
2
7 =1(V——UZJ, (3.7)
P\ 2A
where the eigenfunction factor F,(R) has a
form:
FI(R)=J’U5 , 0<R<1 and
J\U
80

— Kl;(WR)

F,(R)—m, 1<R<w, (3.8)
i

J,(£) is a Bessel function of the first kind /- th

order, K| (é) is the McDonald function, W -is
the waveguide parameter of a clad,
V2=U>+W? and [=012... .

The function J,(£) near the point &=0 is
J,(.f)oc§l, consequently, the expression (3.5)

describes the fields bearing the axis optical
vortices — the guided vortices. If one denotes the
states in which the guided vortices can exist as

|O',Kl>_(l >O), we obtain the following four
|+L+1), |-L,-1), |+1,-1) and

|—1,+I>. The vortices with the same signs of

states:

the topological charge / and helicity o :
|+1,+l> and |—1,—l> are called the uniform

circular polarized ones while the rest of the

fields: |+1,—l> and |—1,+l> are called

nonuniform because of the proper distribution of
the angular momentum of their fields [27, 72].

In the degenerate case no properties of the
guided vortices differ at all from those of the
optical vortices in free space or a homogeneous
medium [13] unless their phase velocities have
intermittent values defined by eq. (3.7). It
should be noted that any linear superposition of
the four vortical states including linearly po-
larized vortices for the given topological charge
[ forms also the steady states propagating along
the fiber without any decays as long as all these

modes have the same propagation constant ﬁl .

I11.1.2 Non-Degenerated Case: Spin —
Orbit Interaction

The second term in the wave equation (3.2) has

a higher order as compared with the other terms.

Its contribution to the wave function (3.5)

manifest itself as the polarization corrections

Ses(x,y) to the field ¢ (x,y) and of to the

propagation constant ﬁ . Although the value Jf

Ukr. J. Phys. Opt. V3. Na2



Fiber Singular Optics

is much smaller than ﬁ : ﬁ >>9f3 , its influence

on the wave process may be found rather
substantial because it changes the exponential

factor: expli(ﬁ + 5,8)2] = expli(ﬁ + 5,8)2 + 27rJ.
From eq. (3.2) and (3.4) we obtain the
polarization correction [67] in the form:

sB=2A[e0.78,2,dS

S

. N0.f0, 0.0, e,
:Sf(ex,ey)[ayfax ayfay](;)ds’ (3.9)
:<5 ]

Hint|€>
where it was used Vinn? =-2AVf, €~e and

the integration was carried over the whole space
0<LR<wo.

The operator H . has a form:

N 10f(. a\a
H =—"\l6,+T/D, 3.10
int 2 81’( 0 ) ( )
sin 2

where T = 14

. [cos2p
sin2¢

in the linearly
—cos2gp ),

polarized basis (the subscript L),

R O e—i2¢>
T= , 0 in the circular polarized
c

ei2

basis (the subscript O) and

N . 0 i, A . .

D=6,—+—-6;—, 6,,6; - Pauli matrices.
or r ~0

Thus, the average value of the operator ﬁint is

equal to the polarization correction

The spin-orbit interaction in fibers not only
lifts the degeneracy but it also changes the
structure of the ground state itself. Indeed, the
operator D gives a contribution to the polariza-
tion correction of for the CV vortices (3.5) and
any their superposition if x =+1, while the ef-
fect of the operator T on such states vanishes.
On the other hand, the operator T exerts a diffe-
rent influence upon the superposition of the non-
|+1,=1)+|-1,+1) and

uniform  vortices

|+1,—1>—|—1,+1> with the single topological
generating  the

charge /=1 polarization

Ukr. J. Phys. Opt. V3. Na2

corrections f;,, #0 and Of;, =0, while the

states |+1,+1),

-1,- 1> are remain. The opera-
tor D changes no |+1,—1>+|—1,+1> and
|+1,-1)—|-1,+1)

found in these states are locally linearly pola-
rized and are called the transverse magnetic 7M

states. The eigenmodes

and the transverse electric 7E waves because
either the z-component magnetic or z-component
electric fields are zero. It should be noted that

the degenerated |+1,+1>,

—1,—l> vortices are
realized with respect to parity. Since TE and TM
modes have different propagation constants so
that of;; =0 and f, - the curve 1, the
nonuniform vortices in the steady states
|+1,-1),

conversion of the topological charges and

-1,+ 1) cannot exist. It means that the

polarization states takes place as the nonuniform
vortex propagates along the fiber [63].

Such a division of the guided vortices into
two large groups is first of all caused by the spin
— orbit interaction in the fiber that in turn has ge-
neric foundation in two energy whirls around
both the fiber optical axis and the instantaneous
normals to the helical wavefront representative
of the topological charge /and helicity o,
respectively.

I11.1.3 Topological Phase and
Polarization Corrections

The complicated whirl movement in the guided

vortex influences the phase velocity manifesting

itself as additional phase deviations in the

eigenmode field. In order to reveal this

movement one writes the Poynting vector

components of the guided vortex [72]:

P =0
P,=-xcKF/(R)G™(R),  (3.10a)
V_ 2
P, =K—F(R),
z \/ﬂ l( )
where K:|EO|2 6_0@, G,(f’():ﬁ—KiF,,
My V dR R

E, - a mode amplitude. The current lines of the
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Poynting vector depicted by Fig.8 emphasize the
structure difference between the uniform and
nonuniform vortex families. The fact is that the
uniform vortex has the whole group of the spiral
current lines rotating in the same direction while
two groups of the spiral current lines of the
nonuniform vortex are twisted towards each
other. Moreover, the spiral pitch of the uniform
vortex is the same for all lines while those of the
nonuniform vortex may change from zero to
infinity. Naturally, a such variety of rotatory
movements cannot but have an effect on the
motion of the vortex itself. The topological
Berry’s phase is the concentrated expression of
any cyclic variations [18] including the whirl
inside an optical vortex [67]. The topological
nature of the Gouy phase in the paraxial
Laguerre-Gaussian beams [48] takes on special
sounding in the form of the topological bi-
refringence [74] while the beam turns into the
guided vortex. In this process the polarization
corrections to the scalar propagation constant
play the main role. Let us consider this problem
more minutely.

From Fig.8 it can be seen that the Poynting
vector performs a precessional motion around
the fiber axis. Its behavior is similar to that of
the wave vector of the fundamental HE,, mode

in a coiled fiber [85,86]. The solid angle Q(C)

in momentum space C is spanned by the
Poynting vector due to a spiral turn at the
azimuth angle ¢ is [67]:

PZ
Q=¢@—P) P=[P+P, . (3.11)

If one denotes the specific topological

phase (the phase per unit length of the trajectory
in the momentum space) as @ = 0Q/dz then the

average value of @ is written in the form:

jepde

(0) =T (g

jpda
0

(3.12)

€)=3B-

int

Thus, the specific topological phase of the
guided vortices represents the polarization cor-
rection Jff to the scalar propagation constant

g
As for the nonuniform vortices with the

single topological charge /=1, their total

consist

z

angular momentum M, = <r xP/ cz>

of the sum of the orbital L_ and spin S, angular
momenta equal each other L, =-S. and
M, =L +S§,=0. Such a vortex with the zero

angular momentum cannot stay in a steady state
and breaks into TE and TM modes.

Fig.8. Current lines of the uniform (a) and nonuniform (b) guided vortex
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II1.2 Generic Guided Vortices in
Perturbed Optical Fibers

Although optical vortices can be transmitted
through the ideal circular locally isotropic fiber
at arbitrary slight
perturbations of the fiber may cause vortex

long distances, any

decay. Therefore, it is better to speak about the
lifetime or lifelength of a generic vortex [2] that
can slowly or quickly change its structure as it
propagates along a real fiber. For instance, an
external mechanical influence upon the fiber can
produce its deformation, cabling, bending and
other imperfections, provoking in that way,
variations of a refractive index profile and a
cross-section form. Naturally such perturbations
change the spectrum structure of both eigenmo-
des and eigenvalues. It is very difficult, without
some analytical calculations, to predict what will
be the spectrum form in a perturbed fiber. The
most vivid example of erroneous prediction in
fiber singular optics is utilization of analogies.
Thus, it is well known that any geometrical [87],
stress-induced  [88,89], thermally induced
[90,91], bent-induced [92-95], twisted-induced
[96-98] and other perturbations take away the
degeneracy over polarization from a single
mode fiber and force a polarization-mode dis-
persion. However, strong uniform tensions insi-
de a fiber core [99] suppress an energy con-
version from one orthogonal linear polarization
to another preserving a linearly polarized HE,,

mode. It would be quite reasonable by analogy
with the single mode fiber to suppose that a
stress-induced low-mode fiber will maintain also
a linearly polarized optical vortex. Nevertheless,
as it has been shown in the work [78] such an
assumption cannot be right and a physical
mechanism prohibitive to do so, is the spin —
orbit interaction.

To see this one should consider in some
detail the mechanism of the level-reconstruction
of the propagation constant £ and transformati-

ons of the wave vectors |‘P,> in an optical fiber

subjected to some deformations of its cross-sec-
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tion geometry [78], a core-clad-anisotropy [100]
and bend [79] perturbations. As a matter of fact,
some variations of the fiber geometry are some-
how or other reflected on anisotropic properties
of the fiber material at the expense of the photo-
elastic effect. Because of it the geometry defor-
mations, the bend and the fiber cabling cause
stress-induced anisotropy. Nevertheless, in
many cases it is possible to study these proces-
ses separately.

I11.2.1 Fiber Material Anisotropy

The aim of this section is to discuss some fine
physical mechanisms of generic vortex behavior
in a weakly guiding fiber.

Consider a fiber with a weak anisotropy so
£=¢-1+66 and

that its permittivity is

&>>0g,; . One also considers that the
directed

coordinate axes where the tensor & is the

anisotropy axes are along the

diagonal one: £= diag(ge,go,go) . The wave
equation (3.2) is written in the form:

((V2 22 1) +ov26 + ﬁ)et )=.(3.13)

=p2le,)

where vz(x,y):(ng +ng)(1—2Af(X,)’))/2’

is Pauli matrix,

2 _,2_,2 5
ov —(ne —no)/2, G,

ﬁ— Vx'gx Vx‘gy _8lnn2
Tlv e vV o.g | €a =75
y ex "y °y @

b

e
‘e t>:[ex J The weakly guiding fiber
y

2, 2 2
and n,, +n, =2n

approximation: 7., = n o

e,0

[82] enables us to rewrite eq. (3.13) as

(ﬁ0+5v2&x+\7j|‘{’>:,6’2|‘11>, (3.14)

where H, =(V?+k2n*(x,y)1), V=CUCT,
1 (1 —i .
C=—1= and the eigenvectors are

S22\

written in the circularly polarized basis. The

equation (3.14) is the equation for the
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eigenvalues A2 of the operator H=H o™ ﬁint

While the levels f* are degenerated in view of

lacking perturbations, “switching on” the
takes

splitting the levels. It is convenient to choose the

perturbations away the degeneracy

following guided vortices of the non-perturbed
fiber as the basis of the generic vortex for the

¥,)

given topological charge /:
W) = |+ L+0),|¥,) = |+ 1,-1),
=|-1-0),|¥,) =|-1+)

and set the normalization requirement in the

(3.15)

g2
form: 27 | RE; (R)dR=1.
0
Now the perturbed part of the operator is

(A +(A2)r2 i+
+k2n (n —n )6 —Ay/ié
cot'e 0’ x z z
—2ig ,  (3.16)
—(A/Z)rzz 2(3 €
P 0
where ;(Ela—l//, _1of 1 ~ i % s the
r or ror’ 'z o
z-component of the orbital angular momentum
operator.
6 | 1
] "6 810 12 14
0
v
i 2
-200-
4001 4
6001
a

The matrix of the operator ﬁint has the
following structure:
Al 0 0 EZ
0 B, E, G
7 _ /A -
H=ly E, 4, 0 =L
El Gl 0 Bl
J, [=0. (3.17)

The corrections 98> to the scalar part ,E 2

are defined by the transcendental equation:
)i =9 /3 =0

Tables 1 and 2 illustrate the eigenvectors

det| (HI. (3.18)

1nt

(‘Pl| and eigenvalues 3’ of the anisotropic
fiber operator. The behavior of the eigenmodes
is characterized by the dispersive curves S(V)
represented on the Fig.9 showing that even a
very small birefringence Sn=n, —n, oc10™®
forces to split the level of CV vortex into even
and odd parts shifting the 7M mode level a little.

The TE mode level responds to the perturbation
only for a comparatively large birefringence

onocl0® =107,

545 “ 1

200

lUI . ) . 3@0 . 4(?0 ‘__‘,.IS-QO
Anx107

2001 3

-4007

-600] 4

b

Fig.9. Dispersive curves for the anisotropic fiber as (a) the dependency of the polarization correction

56 (m™")

on the waveguided parameter V (in non-dimensional units) and dn=2-10"; (b) the

dependency JOf on the birefringence 5n (V=5, A=0.01).The curve 1 corresponds to the state |l>

curve 2 —|3), curve 3 — |2), curve 4 — |4).
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Table 1. Eigenmode fields of anisotropic, elliptic and bent fibers

1| +n sindcoslp| +3 sin(l—1)pG/

n_sincoslop

—n, cosdsinlp

SRS 2k, LUy | 2 ke He | AR =B
V2 (R) V2 e V2FR)n, e, | N2n,\e
n cosdsinlp | I sin(l+1)pG, 3*cos(l+1)p G,

1 =
~F cos(l-1)p G| 7Ou*+5Eu

-n_ singsinlp | -3 sin(l+1)p G,

+n, cosdcoslp | + 3 sin(l -1)p G,

n_cosYcosle

+n, sindsinlg

3 cos(l+1)p G, 1 1
+3" cos(l —1)p G, 2 2

n, cos 9cos/p > COS(I-H)@GI
3 —n  sin $sinlp +3 cos(l ~1)e G/

n_sin3sin/gp

+n, cosdcoslp

3 sin(l+1)p G,
~ 3 sin(l-1)p G/ 2 2

n singcoslp |3 cos(l +1)p G,

n cos Jsin/p

4 S sin(l +1)p G, 1 o 1
+n,cosdsinlg | 3 cos(/ —1)p G, —n, sin Jcoslp +3"sin(l ~1)p G/ 2% 2
+1,i=12
®,=4,+(1-7,)BE, :\/[—A,+(l—7i)B,]Z+4E,2 » Q, = E, - anisotropic fiber; y, :{ Li=3.4
p— ’l = 5

®,=4+B -G, E, = \/(_ A +B -G Y +4D,—yEY) s O =E, —yD, -elliptic and bent fiber.

I =cos9tsindstan29=X, y — 4, +B —yG, ,ZSE[O,ﬂsignQ,] , Gf:ﬁiiF,, FI(R):J’(UNR)»
dR R

neY

It is not unreasonable to consider two
utmost cases of the weak and strong fiber
anisotropy. The weak anisotropy corresponds to

the requirement: Sn<<A(1/p) while the

strong anisotropy is - A(ﬁ/ p)2 <«<on<<l, p -
fiber radius. The weak anisotropy in fact leaves
alone a permanent structure of the eigenmodes
of a non-perturbed fiber varying only in the
The
anisotropy, besides, transforms the eigenmode

polarization correction values. strong

structure unless the modes become linearly

polarized fields:
0
)| o)
cos @

sin
0

cos@ 0
“P3>oc( 0 ]., ‘\P4>Oc[sin(pj'
The main distinguishing feature of the

vortex is its angular momentum M =rxP/¢?
that can be divided into orbital and spin parts
(for the weakly guiding fiber) so that

Ukr. J. Phys. Opt. V3. Na2

M_ =L _+S§,. The orbital angular momentum
is defined as (/=1)

L =<£Z>=<l1'

_ cos(S—g){ cosdcosdcos f;z }+ (3.19)

+sin 9sin J cos f,,z

~\[ sin cos I
+sin(19—19>{sm cos cosﬂnz}

+cosYsin cos S,z

L

z

¥)=il¥] 1)

for the x- or y- polarized optical vortex. The spin
angular momentum of such a vortex can be
found as

(s,)=(¥

= sin(f + HN)[ cos@ cos cos 5ﬂ13z

A

GZ

)

—sin@sind cos Boy? 1- . (3.20)
—cos(f + 67)[cos9 sin @ cos 5ﬁ’14z

+sin@cosd cos 5,823z]
where we denote Of, = 6f, —9p,, the value 9
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Table 2. Matrix elements of the spin — orbit operator o H for a perturbed fiber

A (2 ' ,
A== R = FF ), 5 =R AR )
Yo 7
Elliptic fiber [ = 1,2 Anisotropic fiber [ =1
C, =0; E =nk*An, C,=D,=0
D, = ak’n, 28 Ala ) +b,FF ), s Bent fiber -1
0/ o
270N 2 , ) "
G, =——\p,F, +d,F,F, =2b\F," + F,F, |i,_ A : - F -
] ’”oz {P/ i 1l 1(1 ! 1)}1271 Gzzrﬁ{52+ﬂﬂ}R:l’Cl_E‘_O’
0
R, - radius of a bend
2
B _E,Z—l B 0,/=1 3 =1 1,12
9= 5 ;b= 1]—2;d1_ o Pir=y o6 ., An=n, —n,
Sel=2 b= ~14,1=2 -8,1=2

corresponds to i=1,2, while 9 - to i=3,4 (see
Table 1). The angular momenta are given as
normalized quantities in eqs. (3.19) and (3.20).
The orbital angular momentum in the fiber with
the  weakly

anisotropy changes to

L. ~cos’(B,/2k) and the spin momentum — to
. 2 B .
S, =sin’ z—lz . Since the value B, does not

depend on the anisotropy on the angular
momentum varies in the same way as it changes
in the ideal fiber [72]. The strong anisotropy
offers an other plot of the vortex evolution. So,
the orbital momentum has oscillations in the
form L. ~cos(B,/2k)z

momentum 1is entirely suppressed. This process

while the spin

can be traced in detail by the course of the
discriminatory curves depicted in Fig.10. Thus,
the oscillating nature of the angular momentum
shows that the anisotropic fiber cannot preserve
a linearly polarized guided vortex.

I11. 2.2. Geometrical Birefringence

The influence of geometry upon the optical
anisotropy of different objects has been more
than once stressed in a lot of experiments (see,
for example, the work [3]) and was called the

86

birefringence of the form. Only recently its
systematic study begins due to single mode fi-
bers. The fact is that some geometry variations
of a fiber cross-section stimulate the polarizati-
on-induced dispersion and thereby restrict the
information transmission rate within a narrow
range. They also play an important role in li-
miting the vortex lengthlife. Although the
geometric influence manifest itself
simultaneously with the anisotropic one it is
sometimes useful to consider its separately
[78,100].

Provided that a perturbation of cross-
section geometry is very small then we can

choose the refractive index profile of a fiber in

the form:
f(x’y):> f(x(1+6)’y(1_5))
and oO<<l1
TR /A
SCNESS Y

while the function 7 describes a non-perturbed
profile. The ellipse eccentricity e and the

parameter 0 are connected with each other by

S~e*/4 . Then the operator of the spin — orbit

interaction can be written as

Ukr. J. Phys. Opt. V3. Na2
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0

_avie. —(ar2py] ° e
H Vie d e —-AS

int

- [At//+(A/2)r2;(]i

The matrix of this operator has a form
Al D 1 Cl E !

_ |D, B, E C+G
oH=| ! : LT (322)
Cl El AI Dl
E, C+G, D, B

The eigenvectors are defined as the super-
position of the eigenvortices of a non-perturbed
fiber and the polarization corrections — by
eq.(3.18) that are presented by Table 1 and 2.

As it has been in the case with the material
anisotropy two limiting situations can be singled

out: the weak ellipticity: 5<<(A/p)* and the
(A/p) <<6<<1. In

connection with this, it would be interesting to

strong  ellipticity
discuss the problem of the angular momentum
of the circularly polarized generic vortex.
The generic vortex state using Tables 1 and
2 can be written in the case of the weak
ellipticity as
|1,l>e” ={ 1,l>cos5ﬂ24z +

+ i| - 1,—l> sindf,,z }eXp{i(ﬁ + P )Z}
so that the total

(3.23)

angular momentum is

M Ze” ~ cos 0f,,z while the spin and orbital
momenta have a form: S, ~cosof;z and
L. = —cosdf,,z, respectively.

The strong ellipticity case gives the generic
vortex state in the form:

1,l>dl :%ﬂl,l>(eiﬁ12 +e 4 e +eiﬁ42)+

- 1,—I>(— P — P 1 Py o )+
|1,—l>(eiﬂ'z — e g P P )+
L) (e e 47 ) | (3.04)

and the spin and orbital momenta become
S, = COS(B1 /2k)z and
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~ 143 . 1 5.0 &%
+H2f +—r G, +—r ,
[f 1 zj 7 Z(ew 0

2r
(3.21)

L. =cos(D,/k)z cos(B,/2k)z, respectively,
so that the total angular momentum is
M, =2cos’(D, /2k)zcos(B, / 2k)z .

The results obtained enable us to conclude
that the circular polarized fiber vortices cannot
also propagate without any structure variations
along the geometrically perturbed fiber. The
oscillations of the orbital and spin angular
momenta point out the energy conversion both
between a positive and negative value of the to-
pological charge and the right and left polarizati-
on states. There exists a wave state with zero
angular momentum when the vortex as such has
disappeared. Fig.11 schematically illustrates the
conversion process of the orbital angular

momentum L_of the generic vortex that

manifests itself by variations of the intensity
distribution at the cross-sections of the fiber
straight region. So, the generic vortices with
opposite topological charges in series are
swapped around passing through the wave state
with a pure edge dislocation. However the topo-
logical charge and helicity are inseparably lin-
ked with each other in the optical fiber [27].
Consequently, state polarization also
experiences a helicity transformation [26]. It
means that the spin angular momentum takes
part in this conversion process too. At the same
time, the orbital and the spin momenta have
different oscillation frequencies both having an
irrational ratio in general case. Because of it the
initial vortex state cannot be recovered at any
fiber cross-sections though it may approach
rather close to the initial one. Besides, the state
with a pure edge dislocation bears no orbital an-
gular momentum, but this does not necessarily
mean that the spin momentum is zero. Just the
opposite, the spin momentum at this cross-sec-
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tion may be the highest possible. Moreover, the
total angular momentum is not conserved both
in an elliptic and an anisotropic fiber as a rule.

I11.2.3. Bent Optical Fibers

The optical fiber used in real fiber-optical
devices as a rule undergoes a mechanical bend
and cabling that cause a stress-induced
birefringence and, consequently, levels of the
propagation constant must experience a splitting
and a shift. The bent fiber problem discussed in
detail for single-mode fibers (some of the works
are [92-95]) has been considered for fiber
[79,102,103].

Nevertheless we shall endeavour to make this

vortices only in the works

topic clear. The twisted fiber problem will be
discussed briefly in the next section. Thus we
shall neglect a stress-induced anisotropy.

We should focus our attention on three
main  physical ~mechanisms  manifesting
themselves due to the fiber bend: a curved
geometry of the bent fiber, an asymmetry of the
refractive index profile and a stress-induced
anisotropy. In one form or another the influence
of these factors upon the birefringent have been
already taken into account in the numerous
works on a single mode fiber (see, for example,
the works [92-95] and the references to them).

The influence of geometry upon the mode field

lies in a different respond of light field
components on the curved-fiber space — the
component lying in the plane of the bend and
orthogonal to it have different phase and group
velocities. In other words, an optical path
increases for one of the field components. The
asymmetry of a refractive index profile origina-
tes from differences of an optical density of a
fiber cross-section near the bend center and at
some distance from it.

The model of a bent fiber [79] accounts for
the fact that practically in most often met
situations the bending does not destroy the
transport properties of the fiber and is
manifested as a perturbation on the background
of a stable state. It has to be based also on the
assumption of translatory invariance along the
fiber axis.

The refractive index of a bent fiber can be
transformed into the refractive index of a
straight fiber in the wave equation (3.2) in the
following way:

n(x,y):(uzj1(1+;(1_zy)],

ﬁ(x—ux,y—uy)

(3.25)

where u_ =x/p , u, =u, =-pu_, yu is the

Poisson coefficient. Asearlier the basis vectors
are chosen in the form of guided vortices of a

Fig.10. The orbital L_(the curve 1) and spin S, (the curve 2) angular momentum
evolution (in relative units) of the linear polarized vortex as the function of the fiber length

z (m) and the anisotropy o n
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non-perturbed fiber. Then the spin — orbit
operator gains the form:

I:Iint =k2(n2 —ﬁz)i+
+i{[(lnn2)xx +(lnn2)yy]i+
E

+ [(ln n’ )m - (ln n’ )W
+2(nn?), &, +

(3.26)

Xy y
+2nn?), v, ~(nn?).v, )&, )
where = % The eigenmodes, the

" ou’
polarization corrections and the matrix elements
of the operator (3.26)

A, D, C, E,

D, B, E,
¢, E 4 D
E, C/+G, D B,
are introduced in Tables 1 and 2.

SH =

The behavior of the curves is similar to
those both in an anisotropic and an elliptic fiber,
at any rate the bend takes the degeneracy off the
propagation constant level making it oscillate
the spin and orbital angular momenta. Naturally,
the optical vortices in these fibers are not
eigenmodes and break up into eigen modes of
the perturbed fiber that have the
mathematical form for all the above considered

same

perturbations.

IV. Forecasts and Prospects

The unique properties of optical vortices open a
variety of new possibilities for their application.
For example, the form of the laser beam bearing
an optical vortex is similar to one of a potential
hole for trapped cold
constructions of such optical traps have been

atoms.  Several
more than once proposed and experimentally
realized (see the work [22] and the reference to
it). Moreover, optical vortices became the
physical instrument to create optical tweezers
and spanners able to trap, transport and twist
microscopic particles having sizes up to 50 um

(see the works [20,22,23,106] and references to
them). Application of optical fibers in such

Ukr. J. Phys. Opt. V3. Na2

Fig.11. The conversion of the orbital angular
momentum L, of the generic vortex in the state
|+1,+1) along the beat length A (in meters)
for the strong ellipticity case: A=0.01;

n, =148, e=0.1.

constructions could greatly enlarge the
functional scope of these devices. However,
guided fiber vortices themselves possess utterly
unique properties distinguishing them from
vortices in free space [81, 107-110] that can be
called for different fiber-optical devices as
optical gyroscopes and other sensors of physical

values.

IV.1. Fiber-Vortex Temperature Sensor

Consider briefly the fiber-vortex temperature
sensor [107-111] on the example of which we
make the acquaintance of the main peculiarities
of this sort of device.

Fig.12 depicts the optical scheme of this
interferometric sensor. We can distinguish four
major optical units: 1) the optical vortex ge-
neration unit, 2) the excitation and light guiding
unit, 3) the vortex selection unit and 4) the data
processing unit. The first and second units we
have discussed in Sec.Il.5 and III, respectively.
The last unit has its specific traits and it is a
computer engineering area rather than optics
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[109,110]. Let us focus our attention on the
optical vortex selection unit placed on a fiber
output.

The fact is that the slight displacement of
the excitation beam on a fiber input relative to
its axis causes the appearance of additional noise
generic vortices in the fiber canal even if any
strong mechanical perturbations are absent.
Thus, both constrained and free vortices are
propagated in the fiber. The constrained vortices
combine symmetric topological dipoles and
quadruples [20, 22, 81, 111] while the joining of
the free vortex to these topological pairs distorts
them and the asymmetric dipole or quadruple is
formed. The typical vortex trajectories in a
symmetric topological dipole are shown on
Fig.13a. As a rule, there exist forbidden and
confident zones in such topological structures.
At the edges of these zones the optical vortex
pairs are born or die. In the given case the
vortices intersect the focal plane in the points
lying symmetrically relative to the optical axis.
These opposite topological
charges, their interference spirals are wound

vortices have

directions and hinder
Quite
pattern of the propagation process of an

round in opposite

interference  measurements. another
asymmetric quadruple is depicted in Fig.13b.
Like in the first case there exist the confident
and forbidden zones but energy is redistributed
in another way among the optical vortices. The
larger energy portion has an associated free
vortex. As fast as the topological pairs come
near the focal plane the associated free vortex
snuggles up to the axis while the rest of the
vortices are forced out to the periphery, losing
energy. The interference pattern becomes,

essentially clearer and accuracy of the
interference measurement increases greatly. In
practice [108] two short-focussing lenses placed
at the fiber output accomplish this mode
selection. However, in contrast to an ordinary
vortex filtration [61] this approach demonstrates
the vortex self-recovery because no all the

energy disappears but is only redistributed.
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A temperature interferometric measurement
of a low-mode fiber maintaining about eight
modes including the work guided vortex was
made in the work [108] and the result obtained
showed that the temperature sensibility is almost
twice as much as the typical single-mode sensor
[90, 91]. In spite of such high experimental
estimations, the practical applications of the
fiber-vortex sensors are more than modest
because these devices are unstable to some
mechanical vibrations and other accidental
hindrances. One must try to elucidate the cause
of such vortex-sensor behavior. Among the
causes most likely to be at fault is the explotable
optical fiber itself. It is only the ideal circular
fiber and its perturbed variants, that cannot
maintain a single optical vortex!

IV.2. Vortex Preserving Fibers

In order to preserve a single guided vortex in a
low-mode fiber it is necessary to suppress the
rest of the eigenmodes and in the first place TE
and TM fields. As a matter of fact these modes
are simultaneously excited by the guided vortex
in the fiber and cause a major noise. Besides, a

fundamental HE,, mode (having no cut-off and

being constantly in a fiber) displaces a vortex
center and takes away a portion of the energy
from it. However, the energy distributions of the
TE and TM modes differ from those in the
vortex. Though transverse components of the
wave functions both in the vortex and in these
modes have zero value at the fiber axis, the
longitudinal components in the transverse modes
are maximal. Moreover, a transverse component

of the HE|, mode is maximal there too. The

authors of the work [112] have proposed a way
to cause energy losses of the noise modes at the
expense of an impurity absorption in the vicinity
of a fiber axis. This is easily accomplished by
causing an impurity absorption in a waveguide
core while manufacturing a fiber. In this fiber
the noise modes are extinguished thousands of
times faster than the guided vortex.

Ukr. J. Phys. Opt. V3. Na2
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Fig.12. Sketch of the fiber — vortex temperature interferometer: Ls — He-Ne laser, S
Pr — beam’s splitter, T — vortex transparent, MO - 20" microobjective, Mr — mirror,

CCD — camera, L — lens, A/4 - A/4 plate, Cp — computer. (I — the vortex generation
unit, 1l — the vortex excitation and guiding unit, Ill- the vortex selection unit, IV — the

computer-data processing unit)

At the same time, there are other
possibilities to preserve a single guided vortex in
a fiber. Thus, a single-mode fiber has been
shown [113-115] to enable us to maintain an
only circularly polarized mode provided that
a core of an elliptical fiber is twisted around
its optical axis with a certain pitch. The cabling
of a low-mode fiber is connected with a
number of surprises that can be after all

overcome

[80, 81] and special spun-fiber types may be
exploited in fiber sensors as supersensitive
elements as for example, in the work [116]. The
three types of fiber core preserving a single
vortex are illustrated in Fig.14. It is relatively
simple to give an estimation of the requirements
for a vortex preserving fiber. Consider it on the
example of a core-spiral fiber [81].

0.5

o

-0.5]
s__j:é5?-- gy b .-.-
2-1-15.1059 5
H ’ |
a

Fig.13. Vortex trajectories: (a) the symmetric topological dipole (at the center); its intensity
distributions at the focus plane z=0 (« ) and in the vicinity of the birth point z =z, (/5 ); the

topological quadruple () and octople (0 ) ; (b) the asymmetric topological quadruple (at the center);

its theoretical intensity distributions at the focal plane (« ) and far from it (£ ); the experimental

interference spirals near the focal plane (¥ ) and far from it (9 ).
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ZQ'(U
Fig. 14. Vortex preserving fibers: (a) the

elliptical-twisted core; (b) the single spiral core;
(c) the duel-spiral core.

Let us consider an optical fiber with the
inner core wound around some axis in a spiral.
(Fig. 14b). The Poynting vectors of all guided
fiber modes are in the same whirl movement and
obtain  the additional
topological phase. The value of such a phase per

eigenmodes same

one spiral turn may be found as it has been
shown in Sec. I11.1.3 and it equals

L, = 27(1-cosy), (3.28)
where the spiral torsion is defined by
2 . .
cos ;(:”—SR, R - the spiral radius
2z R) +h?

and # is the spiral pitch. At the distance z the

topological phase will be I, = NT , where the

ot
number of the spiral turnsis N =z /h.

On the other hand, the Painting vector of
the generic vortex in the straight fiber section
accomplishes a proper precession movement.
Besides, as it was mentioned above, the CV
vortex, TE and TM modes gain different

polarization corrections Jf3 . at the expense of

prec
their proper precessions. However, if the value
of Berry’s phase induced by the spiral core is
larger then the proper Berry’s phase per unit

length for each mode h>> 5,8(”’) then a

max
z

synchronization event takes - place. It means
that the nutation movement suppresses all other
Poynting vector movements and imposes the
new regime of the mode transmitting. In fact, all
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fiber-guided modes with close values of the
propagation constant combine with each other
forming four new wave states — the eigen guided
vortices.

For simplicity one assumes that an optical
fiber has the parabolic-index profile Then the
polarization correction is [82]

(24)2
splo) Z A2 (71
3 2pV(+ :

By combining eq.(3.26) and (3.27) one
obtains the requirement of the fiber vortex

(3.29)

preservation:
1 h 1
— <<
4r z, L (27Z5Rj2
h , (3.30)
kp?
Zp = 5 Reo

The estimations show that dimensions of
the spiral pitch and its radius have sufficiently
(R oc20+40um and

hoc60+100um) for the elaboration of the

rational values

vortex preserving fibers. It should be noticed
that such fibers may have also a twisting and
duel-spiral core (Fig. 18b,¢).

V. Conclusions

Singular Optics being one of the new branches
of Modern Optics studies a wide class of
electromagnetic phenomena associated with
phase, polarization and amplitude singularities.
Most of the authors characterize a vortex state in
free space by means of only a topological charge
while an optical vortex in a guiding system
nevertheless needs two numbers — the
topological charge / and helicity o . It means
that a vortex propagation in inhomogeneous
media is hardly connected with its generic
peculiarity — a polarization state. The coupling
of the topological charge and helicity is of the
spin — orbit interaction. It is the interchange
between the spin and orbit characteristics in a
singular beam that causes the splitting of the

propagation constant levels in a fiber. Moreover,

Ukr. J. Phys. Opt. V3. Na2
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the spin — orbit interaction stimulates an
additional level splitting at the expense of
external fiber perturbations. These conditions
restrict a vortex lifelength constricting scope of
the vortex applications in real fiber-optical
devices. At the same time, use of a guided
vortex even in customary low-mode optical
fibers for their
sensitivity almost twice as much as the usual

optical sensors enlarges
interferometric devices.
In our review we showed that there exist at
least two ways of manufacturing vortex
either the fibers with
absorption impurity centers doped near a fiber
Such a fiber

construction suppresses noise modes while the

preserving fibers:
axis or the coiled-core ones.

properties of a single fiber vortex almost are
practically not affected.
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