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Abstract

The algorithm for computer simulations of the conoscopic patterns for gyrotropic
birefringent crystals is proposed. Traditional approach to the analysis of the conoscopic
patterns is based on the approximations reducing the original phase retardation function to
the equation of a circle, ellipse or hyperbola. Our computer simulations are based on the
complete expressions describing the light propagation in a gyrotropic crystal without
expansions of the complicated functions in a series. The simulated conoscopic patterns for
one and two crystalline plates with symmetrically tilted optical axes (double-plate) are
represented. The shape of the isochromes is discussed. The simulated patterns reproduce an
experimentally observed phenomenon of the existence of circular isochromes at a non-zero
tilt angle 6. of the optical axes for the double-plate. The &, values deduced from the
computer simulated patterns well agree with the values estimated from an approximate
expression for 6, earlier found in [Vlokh O.G., Kobylyanskyi V.B., Lazko L.A. Ukr. Fiz.
Zhurn., N10, pp.1631-1638 (1974)].
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1. Introduction

Conoscopy as an optical crystal characterization
technique being quite simple in its experimental
realization, in fact replaces many procedures
which have to be performed to probe the light
propagation in a crystal in different directions.
Sending a diverged light beam on the crystal
which is placed between crossed polarizers one
obtains an interference pattern (conoscopic figu-
re) usually composed of two sets of lines: isogy-
res and isochromes. Analyzing the conoscopic
figure several important crystal characteristics
(type of crystal (uniaxial or biaxial), optical
sign, orientation of the optical axis (axes), prese-
nce and sign of gyrotropy, birefringence value)
can be easily determined following the simple
procedures well described in literature (see for
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example [1-4]). The analysis of the conoscopic
pattern is based on the theory of light
propagation in a crystal for different directions
[2]. Although in principle the light propagation
in crystals is well understood, the analysis of the
conoscopic patterns is not always trivial. This
especially concerns to the situations when a gi-
ven conoscopic pattern results from the light in-
terference in more than one crystal plate or
when the crystal is distorted. In these complica-
ted cases the isochrome and isogyre equations
are of transcendental type and not always can be
easily transformed to the equations of second or-
der lines (circle, ellipse or hyperbola). As a mat-
ter of fact even in the simplest case of an uni-
form uniaxial crystal one has to use an approxi-
mation expanding complicated functions in a
series. The approximation procedure is quite
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laborious and requires careful selecting of
important terms according to their weights and
proving the series truncation. In most practical
cases the fine structure of the conoscopic pattern
is lost after the simplifications.

Another way to analyze the complicated
functions describing a conoscopic pattern is to
generate their so-called Density Plot using
advanced programming software as for example
Mathematica or Maple [5]. These programming
packages allow to work with exact expressions
Density Plot
package maps values of function f{x,y) as points
of different brightness such the value f{x,y)=0 is
represented by a black dot in a given point

without approximations. The

(x,y), the highest f value corresponds to a white
dot and the intermediate values are plotted as
dots of corresponding gray levels. The Density
Plot of the calculated light intensity function
I(x,y) for the conoscopic pattern looks one to
one as corresponding experimental conoscopic
figures. In our previous paper [5] we proposed
an algorithm for computer simulation of
conoscopic patterns for distorted uniaxial
nematics. In this paper we extend this approach
to the simulation of the conoscopic patterns for
gyrotropic uniaxial crystals. We start with the
plotting of conoscopic figures for a gyrotropic
crystalline plate with tilted optical axes and then
consider two gyrotropic crystalline plates with
symmetrically (further

double-plate).

tilted optical axes

2. Algorithm for computer simulations of
conoscopic patterns for gyrotropic
birefringent crystals.

2.1. One gyrotropic crystalline plate.

The description of the conoscopic pattern for a
gyrotropic birefringent crystal was performed
for the first time in the paper [6]. The choice of
the coordinate system in [6] was stipulated by
the intent to simplify the isochrome equation.
Here we work in the Cartesian coordinate
system with its origin in the focus of the
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diverged beam. The focus of the diverged beam
is located on the crystal first surface. The axis of
the diverged light beam and the perpendicular to
the crystal plate surfaces are oriented along Z-
axis (Fig.1). The X-axis is chosen along the
polarization direction of the first polarizer. The
crystal is considered to be transparent. The
orientation of the crystal optical axis is defined

by the polar and azimuth angles & and

5

Fig.1. Cartesian coordinate system and expe-
rimental set-up; 1-laser, 2- polarizer, 3- crystal
plate (plates), 4- analyzer, 5-screen.

y, respectively. The orientation of a given ray
from the probing light beam is given by the
polar and azimuth angles y and u, respectively
(Fig.2). In the calculations the second polarizer
(analyzer) is considered to be in the immediate
contact with the second crystal surface and
serves as a screen. All optical elements are
considered to be free of optical imperfections,
and the efficiency of the polarizers to be
independent on the polar angle of a light ray.
The contributions of the reflection from the
interfaces are neglected.

The light intensity passed through the
crystal placed between the crossed polarizers
(Fig.1) can be calculated using the Jonnes
matrix formalism. The Jonnes matrix of a
gyrotropic crystal with a desired azimuth
orientation of the optical axis with respect to the
light beam can be determined as:
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T =cos(A/2) —

— i [(14)/(1+17)] sin(A/2) cos(2y),
Ty ==To =~[{2k/(1+K)}+

+ i [(1-40)/(1+K)] sin(2y)] sin(A/2),
T5, = cos(A/2) +

+i [(1°)/(1+K)] sin(A/2) cos(2y),

where A is the phase retardation caused by the

(1)

elliptical birefringence, k is the ellipticity of the
eigenwaves in the crystal, y is the azimuth angle
of the principal plane (a plane containing the op-
tical axis and the wave vector of a given light
ray).

For one crystal plate placed between
crossed polarizers the transmittance (intensity
normalized by its value on the crystal's first
surface) is of the form:

[ = (Re[T12])*+ (Im[T}2])

and can be rewritten as:
(AR (1=K ) *sin® (A/2)sin’(2y )]

! (1+k° ) @
The elliptical phase retardation can be
calculated as a geometrical average of
contributions from linear and circular
birefringence
A=2rxnan/A)*
(sin' ¢+ {mycos” g+ musig )7, (3)
where n is the average refraction index,

An = ny —ny is the difference between the re-
fractive indices along and perpendicular to the
optical axis, respectively, 17, = 2g;/(n 4An), , =
2g, /(n An),
parameters along and perpendicular to the

gy and g, are the gyration
optical axis, ¢ is the angle between the optical
axis and the wave vector of a given light ray.
The expression defining the angles ¢ and y in

cos¢= [d cos@ +sinf (x cosy +y siny) J/(x’+y*+d)"”, @
cos y = (x cos@z—dszne cosy) . s
[(xcosO—d sin@ cosy)” +(ycos@—d sin@cosy)” |
j (ycos@—d sinf cosy )
e 72 " (5b)

[(x cos@—d sin6 cosy )* +(y cos@—d sinf cosy )* ]
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Fig.2. To the definition of the computation parameters. The half-plane y>0, z=d is in the plane of
the page and is overlapped with the analyzer and screen planes. For the convenience the half-
plane y=0, 0<z<d is depicted in the plane of the page but keeping in mind that really this plane is
perpendicular to the half-plane y>0, z=d. S is the origin of the coordinate system. A and K are
located in the plane z=d and are the exit points of the optical axis SA and of a given ray SK with the
wave vector k, of the diverged light beam, respectively. K(x,y) is a given point of the conoscopic

nattarn
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Cartesian coordinates are in the form [5]
Following [2,3] the ellipticity k& of the
eigenwaves can be written as

k

B sin2¢-\/sin4¢+{77// cos’ p—n, sin* ¢ }° %
{ny cos® - . sin® ¢ }*
The system of equations (2-6) is the

)

algorithm for generating the Density Plot of the
function /(x,y). The

patterns for different angles & with some typical

simulated conoscopic

crystal parameters are shown in Fig.3. It is seen
that for #=0° the isochromes are circles centered
on the axis of the light beam as it is for a non-
gyrotropic  birefringent crystal. Indeed, for
w=const substituting (3) in (2) we obtain the

a) 6=0",2,=0.0005

0o

-3 180 [+

¢) 6=13°,,=0.005

equation of a circle with the radius A, namely
(oA/cu)=0 at 6=0. However in contrast to the
conoscopic pattern for a non-gyrotropic crystal
the isogyres disappear before they approach the
center. Because of the non-zero g, the center of
the conoscopic figure might be dark (when
A=2mm, m is an integer number) or bright
(A#£27tm).

When >0 the isochromes are not circular.
They are self-closed curves at 0<6<.54.5° (fur-
ther small #) and broken ones at 54.5°<6<.90°
(further large 6). In the first approximation these
curves can be modelled by an ellipse or
hyperbola at small and large 6 respectively. Our
analysis shows that for the gyrotropic crystals at

N

b) 6=13",2,=0.0005
=300 i

d) 6=13",g,=0.01

Fig.3. Computed conoscopic patterns for a single gyrotropic crystalline plate with An=0.1, g,,=0.
The isochromes are circles centered on the axis of the probing light beam at #=0° — a). At
nonzero 6, for example #=13° the isochromes are self-closed curves of a complicated shape
different from the shape of an ellipse when the parameter n=2g9,,/4n increases: g,,=0.0005 — b,

9,,=0.005 — ¢, g,,=0.01 —d.
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small @ the isochromes shape essentially differs
from the shape of an ellipse when g/ is large (see
Fig. 3c,d). The isochromes are rather of the bean
type contour than simply elliptical. They are
concave out from center and convex in the
direction to the center. The concavity-convexity
of the isochromes is small for typical crystal
values. However it becomes well visible for
large gy in the computer simulations (Fig.3d).
One has to notice that the isochrome shape is
defined by the parameter 1 =2g,, / An (here we
take g,,=0). Hence, 7 can be large when 4n is
small. The situation of small 4»n can be realized
near the isotropic point [7]. We are considering
this situation in our forthcoming paper.

One more difference between the conosco-
pic patterns for non-gyrotropic and gyrotropic
crystals was documented in the paper [6]. It was
shown experimentally that for two gyrotropic
crystal plates with symmetrically tilted optical
axes at dincreasing, the shape of the isochromes
becomes circular twice: at #=0° and at some
special 6. value, which depends on the 7 para-
meter. As it was stated in [6] this effect exists
also for one plate. The action of the second plate

around the center of the probed light beam.
These new central isochromes also become
circular twice in the same way as the isochro-
mes centered around the exit points of the opti-
cal axes. In [6] the effect was analyzed analy-
tically using several expansions of A in a series.
The final expansion was truncated at the second
order and the authors [6] have found an ana-
lytical expression for 6.

sim@, ~2""n @)

For a typical gyrotropic crystal 7 takes a
value from the range 102+107. Hence, accor-
ding to [6], @ supposes to be a value between 7°
and 14°. Computer simulations based on the al-
gorithm that does not involve any simplification
expansions (see below) really reproduce iso-
chromes transformations mentioned above. The
values @, for which the isochromes become cir-
cular well agree with the expression obtained in
[6]. The circular shape of the isochromes for
typical 77 values was really obtained at & being
between 7° and 14°. The conoscopic pattern for
two plates will be discussed below. Here we
only point out that the circular isochromes also

appear for one plate at 6=4.. The existence of

Fig.4. Computed conoscopic patterns for double-plate at different tilt angles of the
optical axes.

is to produce additional isochromes centered
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the circular isochromes implies that for y=const
(oA Au)=0 (8)
at 6=0.. However substituting (3) directly in (8)
we find that for all 620 the left part of the
equation (8) contains the terms depending on u
and . Therefore for 620 the isochromes never
become true circles. Thus, the experimentally
observed circular isochromes are circular only
apparently. As it was mentioned above at 6=
the real isochromes are not exactly elliptical and
as a result they are not ideal circles at 6=6,.
Performing the expansions of 4 in a series one
can approximate the real isochrome shape by an
ellipse and then one can find 6. at which the
ellipse transforms into a circle. It follows from
the experiment as well as from the computer
simulations that the deviation from the circular
shape

is really small indicating that the

mentioned approximation is valid.

2.2. Two gyrotropic crystal plates.

As mentioned above to find the transmittance of
the light passed through two plates placed
between the crossed polarizers we use the
Jonnes matrix formalism. Finally we have:

1= (Re[T"])*+ (Im[T"])’,

where

=1 T+ T T, )

the indices a and b correspond to the
orientations of the optical axes in the plates a
and b, so that the components of the matrix 7}
given by the equations (1) have to be calculated
with y=45° for a and y=225° for b plate.

Substituting relations (1) in eq. 9 we have :

The light transmittance is of the form:
I=csin’ [(Ag+Ay)/2]+
2{cy sin([A/2])+c; sin([Ay/2)} *
*sin([Ay2) sinf(A,+A4,)/2]+
csin’(A/2) sin’(Ay/2)+ (10)
C5c0s(A/2)sin(A/2)sin’ (Ay/2)+
cscos’ (A/2)sin’ (Ay/2),
with

2 2
ci=s; + 84, C2=58183 T 8456,

2 2
C3=8182 T 8485, C4=83 T 84,

C5=8555 + $283, Cs=Sr + 55, (1)

Ay, Ay sin(2y.), cos(2x.), cos(2y), k., ky can be
calculated from equations (5a), (5b) and (6)
substituting y=45° for a and y=225° for b plate.

The equation (10) together with notations
for the coefficients is the algorithm for the
calculation of the conoscopic pattern for the
double-plate. Fig.4 shows the transformation of
the double-plate conoscopic pattern at the
Hincreasing. We really find that the isochromes
are circular twice: at 6=0 and @&, which
for An=0.1 and g, =0.00025 appear to be about
9°. For the same values Arn and g, the equation
(7) gives 6=8.76°. The agreement of the result
obtained from the computer simulations and
estimated from the theory [6] that involves the
approximations confirms the wvalidity of the
approximations used in [6].

Simulated conoscopic patterns display the
presence of a fine structure. Such a fine struc-
ture really was observed experimentally (Fig. 5)
[3]. It is evident that this fine structure results
from overlapping of the conoscopic pattern
produced by each of the plates separately.

T = s,sinf(Ag+A)/2]+528in(Ad/2)cos(A/2)+ s38in(Al/2)sin(Ay/2)+
if susinf(A+A,)/2]+ s58in(Ay/'2)cos(A/2)+ sssin(AL/2)sin(Ay/2)} (9a)

s1==2k/(1+k}),
s3=(1 k" )( 1=ks”)sin(2 g )/( 1+4k°)( 1+ks’),
ss=2(k,’—ky’) sin(2x)/( 1+kS)( 1+k?),

$2=2(ky—kn) (1 =k den)/( 1k )( 1+ks?),
s4=(1-k)sin(2x)/(1+k.), (9b)

s6={ ka (1-ks*)cos(2x) —ky (1-k)cos(2ys) J/( 1+k)( 1+ky).
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Fig.5. Experimental conoscopic patterns for double-plate of the crystal LiJO; at different filt

angles of the optical axes adopted from [3].

Zeroing the terms in (10) one can establish
the contribution and role of each term in the
transmittance expression. Computer simulations
confirm that the isochromes centered on the axis
of the light beam are described by the first term
in eq. (10) as it was fairly stated in [6]. Solving
the equation

(O(As+2y) /) =0 (12)

together with the condition y=comnst we obtain
in the left part of eq. (12) a rigorous but quite
long expression which contains the terms
depending on u as well as on ¥ . We do not
represent this expression here. The presence of
that the
isochromes centered on the axis of the light

u- and y-depending terms implies

beam appearing to be circular at =6, in fact
exhibit a complicated fine structure. All terms in
eq. (12) depending on u have the coefficients
proportional to (sin w sin 6)" with m being an
integer number between 1 and 8. Neglecting
these terms, omitting the terms with the powers
of 77 higher than 2 and vanishing y we actually
reduce the equation (12) to the equation of a
circle and finally obtain it in a form

sin® Q- i’sin’ 0, (2— 3sin’ 8,) =0 (13)
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which for small @ takes the form (7) obtained
for the first time in [6]. Therefore starting from
the equations (12), substituting the phase
retardations in the form given by equations (3)
and (4) we came to the same result which was
obtained in [6] by the expansion of the phase
retardation function in a series.

Conclusion

In this paper we have proposed an alternative
approach to the analysis of the conoscopic pat-
terns for gyrotropic crystals via computer simu-
lations. In the computer simulations the cono-
scopic pattern is plotted using complete expres-
sions describing the light propagation in the
crystal, while the traditional analysis procedure
requires approximate reducing of the original
equation for the phase retardation to an equation
of the second order curves. The simulated cono-
scopic patterns contain all the details of the ex-
perimentally observed conoscopic figures inclu-
ding their fine structure, and demonstrate the va-
lidity of the proposed algorithm. Computer si-
mulations have also confirmed the algorithmic
reliability of the traditional conoscopic analysis
procedure.
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