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Abstract

We propose an algorithm to compute the conoscopic pattern for distorted uniaxial liquid
crystal cells. The computed conoscopic figures for several cells (homeotropic, planar, twist,
hybrid, hybrid under an external field) are compared to the corresponding experimental
conoscopic patterns. We demonstrate that conoscopy can be used for the characterization of
the distorted nematic cells with the director deformations which can not be detected and

unambigously characterized by direct microscopy observations and other techniques.
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1. Introduction

Optical conoscopy is one of the most often used
optical techniques for the characterization of
solid optical single crystals. The observation of
the conoscopic figures precedes to any optical
investigation of a newly grown (or obtained in
some other way) crystalline specimen. The
conoscopic figure of a thick (~ Smm) solid
crystal can be easily obtained on a screen simply
by laser illumination of the crystal placed
between crossed polarizers. As soon as the
conoscopic figure is observed, then according to
known methods several important structural
characteristics can be determined, namely: type
of the crystal (uni- or biaxial), orientation of the
optical axis (axes), optical sign, presence and
sign of gyrotropy [1-4]. Although there is no
principal difference between the conoscopic
figures of conventional solid crystals and liquid
crystals (LC’s), the conoscopy is used for the
characterization of LC’s not very often. First of
all the main information on the structure of the
LC sample can be obtained by direct observation
of its texture under the polarization microscope.
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There are some technical (but not principal)
difficulties in the conoscopy of LC’s. Usually
LC samples are thinner than few tens of
microns. As a result because of limited aperture
only the isogyres and few isokhromes can be
observed on the screen. Only the isogyres
usually are observed under the polarization
microscope, while isokhromes are out of the
microscope field. Nevertheless in some special
cases, as for example when it is necessary to
establish whether the LC is uniaxial or biaxial
the conoscopy is used [5-11]. The experimental
observation of the conoscopic figures of the
nematic cell under external field was used long
time ago for the demonstration of the field
[12]. The
conoscopic figure of a twisted cell was analized

reorientation effect in nematics
theoretically by Maugin [13], and later Cladis
[14] has used the analysis of the conoscopic
picture for the measurement of the nematic twist
elastic constant. The computation of the
conoscopic figures of homogeneous LC's and
the analysis of the influence of the lens

aberrations were performed in [15]. It is also
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worth noticing that the crystal rotation technique
(CRT) [16] for the measurement of the pretilt
angle of the director in a nematic cell, based on
the analysis of the angle dependence of the
transmittance of the cell between crossed
polarizers, is nothing else but the analysis of
one-dimensional cros-section of the conoscopic
pattern. The conoscopy in its conventional
application is developed mostly for the
characterization of single crystals. We did not
find in

conoscopic figures calculation for distorted

literature the description of the
liquid crystals. The aim of this paper is to
represent a simple algorithm for the computation
of the conoscopic figures for the continuously
distorted uniaxial liquid crystals and to stress the
advantages of the conoscopy for the
characterization of the LC cells. As an example
we refer to the situation when the pretilt angle
values of the director on two substrates of a
quasi homeotropic LC cell are slightly different.
One says that the cell possesses hybridity.
Polarization microscope observations as well as
CRT [16] can not distinguish between the
uniform nematic cell with tilted director and the
cell in which director field is distorted in the
plane perpendicular to the substrates. According
to [17,18], hybridity can be detected at the
measurements of the pretilt angle by so-called
Magnetic Null Technique [19] with light
probing at different angles of the light beam
with respect to the LC cell. Here we demonstrate
that the conoscopy visualizes the hybridity of a
quasi homeotropic cell and characterizes it
quantitatively.

In the next section we represent the algo-
rithms to compute the conoscopic figures for
several LC cells. The conoscopic patterns can be
plotted using Mathematica or Maple packages.

2. Algorithms for computation of the
conoscopical figures

A conoscopic figure displays a two-dimensional
distribution of the intensity I(x,y) of diverged
light passed through the crystal, which is placed
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between the crossed polarizers. If the structure
of the LC sample is known, the function /(x,y)
can be calculated numerically or analitically
depending on the character of the space
distribution of the optical axis in a given sample.

The conoscopic figure contains two types
of lines: isokhromes and isogyres. The
isokhromes are the lines of constant phase
retardation. When the optical axis is normal to
the sample surface (angle £=0°) and parallel to
the axis of the diverged light beam, the
isokhrome equation is the equation of the family
of circles [1-4]. If the optical axis is tilted
(0<B<m/2) the exact equation for isokhromes is
a quite complicated transcendental equation
even for the uniform uniaxial single crystal.
Using the approximation of small aperture one
can simplify this equation to the equation of an
ellipse or hyperbola for small and large
0 respectively [2]. Usually in the books on
[1-4]) the
analysis of the conoscopic picture of an uniaxial

crystalloptics (see for example

single crystal is restricted to the analysis of the
isokhrome equation. For uniaxial single crystals
the shape of isogyres usually is considered to be
trivial. Indeed, for uniaxial uniform single
crystals the isogyres are parallel to the
polarization directions of the polarizer and
analyzer. They have a shape of Maltese cross
centered in the exit point of the optical axis,
defined by the angle 6. If the single crystal is
uniform, the shape of the isogyres is not
sensitive to the angle € value. This is not the
case of a distorted LC cell. The isogyres as well
as isokhromes visualize the distortion of the
director field.

2.1. Uniform distribution of the optical
axis

Let us consider a nonabsorbing uniaxial liquid
crystal between parallel transparent substrates
which is placed between crossed polarizers. Let
the Z-axis of the coordinate system be along the
normal to the substrates and the X-axis be along
the polarizer direction (Fig.1). We consider the
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Fig.1. The Cartesian coordinate system and
experimental set-up; 1 - laser, 2 - polariser,
3 - scattering plate, 4-cell, 5-analyzer,
6 - screen, 7 - power supply. The diverged
geometry of the light beam is obtained by
scattering on the unpolished glass plate (3).

polarizer and analyzer as ideal optical elements
of negligible thickness and reflectance, with the
polarization efficiency independent on the light
incident angle, with their planes attached to the
substrates. A monochromatic (A=0.6 pum) light
beam passing through the polarizer is focused in
the origin of the coordinate system located on
the first LC interface (Fig.2). The diverged beam
with uniform in-plane intensity /; is symmetrical
with respect to the Z-axis. The optical axis is
uniformly distributed inside the sample and is
defined by the polar angle 6 and the azimuth
angle vy.

Linearly polarized light ray, which is in-
cident on the crystal plate at some angle to the
Z-axis is divided at the crystal surface into
reflected and transmitted components. In most
practical cases the reflection is weak and does
not modify essentially the conoscopic figures,
but makes calculations quite complex. In our
calculations we neglect the reflection and
assume that the light energy is transferred
without losses through the sample. The refracted
ray propagates in a crystal as two eigen waves
(also termed as normal waves): ordinary and
extraordinary ones. In the first approximation
the eigen waves are linearly polarized plane
waves. The electrical vector of the ordinary
wave vibrates in the direction C, perpendicular
to the so called principal plane containing the
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wave vector and optical axis. The electrical
vector of the extraordinary wave is directed
along the vector C. located in the principal
plane. The ordinary and extraordinary waves
have different refractive indices and propagate
along different directions according to the
Snell’s law. Exiting from the sample these eigen
waves interfere. The amplitude of the resulting
wave depends on the phase shift between
interfering eigen waves. There are two
contributions to the phase shift: the difference in
the eigen waves refractive indices and the
difference in the pass lengths for two rays. One
can show that for small angle aperture the
second contribution can be neglected comparing
with the first one (see [1-4]). With a good
approximation one can accept that the ordinary

and extraordinary waves propagate along the
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Fig.2. To the definition of the computation
parameters. The semi plane y>0, z=d is in
the plane of the page and is overlapped with
the analyzer and screen planes. For the
convenience the semi-plane y=0, 0<z<d is
depicted in the plane of the page but
keeping in mind that really this plane is
perpendicular to the semi-plane y>0, z=d. S
is the origin of the coordinate system. A and
K are located in the plane z=d and are the
exit points of the optical axis SA and of a
given ray SK with the wave vector k, of the
diverged light beam, respectively. K(x,y) is a
given point of the conoscopic picture.
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same geometrical path, but with different
refractive indices. In this approximation the
eigen wave vectors k&, and k. are replaced by the
wave vector £ of a light ray propagating along
the bisectrix between k, and k.. In Fig. 2 three
vectors: C. (along AK;), vawe vector £ (along
SK) and the optical axis SA,; create rectangular
triangle with C. and & being its cathetuses. The
orientation of the ray can be described by the
polar angle y and the azimuth angle u. The
angle y can be calculated from the Snell’s law
in the assumption that the light ray propagates
with the average refractive index.

The transmitted light passing
through the analyzer display the interference

waves

pattern on the screen. The interference picture is
of the form:
Ixy) = I sin’[A(x,p)/2] sin’[2a(x.))], (D

where A(x,y) is the phase retardation:
A=Qm/A) n An psin’p )

Here for the simplification we wuse the

approximation

Angy = An Sin* ¢ (2a)
An,g is the birefringence for a given ray, An =n
- ny1s the difference between the refractive
indices along and perpendicularly to the optical
axis respectively, n = ( ny+ n, )/2 is the average
refractive index, ¢ is the angle KSA4; between the
ray direction and the optical axis, p is the radius-
vector of a given point of the conoscopic pattern
on the screen. For typical LC 4n values the
approximation (2a) gives relative error smaller
than 4%
expression

Anyg = ng — ngne (ng sin(P)* + (n. cos(#)))".

From Fig.1 we have:

in comparisson with the exact

cosp = cosy cos@ + siny sin@ cos(y-u) 3)

p=digy (4)
In the Cartesian coordinates equations (3),(4) are

cos¢ = {d cos@+

+5in8 (x cosy + y sinp)}y (*+y +d’)"? (5)
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p= (x2+y2+d2)”2 (6)

In equation (1) the angle « is the angle
between the principal plane and the polarization
plane of the incident ray, i.e. the angle between
the vector C, and the polarization direction C; of
the incident ray. In the approximation of small
one can replace a by the angle y, which is the
angle between the projections of the vectors C,
and C; on the screen plane. The approximation

ax,y) = y(x.y) @)

also implies that we do not take into account the
phenomena of the change of the polarization at
the interfaces due to reflection and scattering,
including the angle dependence of the polarizers
efficiency and depolarization on the scattering
plate, which we use in our experiment to obtain
a diverged beam. The deviation from the
approximation (7) will contribute to a real
conoscopic pattern decreasing its contrast but
not affecting essentially the shape of the
isochromes and isogyres.

From Fig.2 we express y as the function of
the x,y coordinates :

sin2y=2(x cos@- d sinf cosy)
(y cos@-d sinBsiny) / [(x cosG—
d sin@cosy)* +(y cosO- d sin0siny)’] ®)
The system of equations (1), (2), (5), (6),
(8) is the algorithm for the computation of the
conocsopic pattern of an uniaxial crystal with
tilted optical axis. Fig.3 shows the Density Plots
for the homeotropic (a), tilted (¢, 6=10° d,
0=85°) and planar (e) orientations of the optical
axis calculated for d=25um, An=0.18, n=1.5,
A=0.6um; and
conoscopic patterns (Fig. 3 b, f). The plotted
conoscopic figures (Fig.3 g, ¢, d, ¢) visualize the

corresponding  experimental

principle of the Crystal Rotation Technique:
light intensity distribution is symmetrical with
respect to the exit point of the optical axis (in
terms of Crystal Rotation Technique with
respect to the angle 6).
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e f

Fig.3. Computed (a, ¢, d, e) and experimental conoscopic patterns (b, f) for different
uniform director orientations with y,=/,=45": homeotropic, 6=0° - a,b; tilted,
6=10° — ¢, 6=85° —d; planar, 6=90° —e, f.
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Fig.4. Computed (a, c, d, e) and experimental conoscopic patterns (b) for the cells with
hybridity; yo=y4=45° : a,b) 0,=0°, 0,=90°; c) 0,=85°, 0,:=90°; d) 0= 04=87.5°; €) 6,=10°, 0;=12".
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2.2. Twisted hybrid cell

The twisted hybrid cell is the nematic cell with
the following surface conditions

Az=0) = 6, Az=d) = 0, (9a)

Nz=0) = 1, Az=d) = ya (9b)
The z-profile of the optical axis is

0= Oy+(z/d) (0, — 0)) (10a)

Y= 7o+ (Z/d) (ya = 10) (10b)

Light intensity passed through the cell and
analyzer is of the form:

1= 1of sin’(ya = x0) +

+sin® (A2) sin2 .y, sin2xq}, (11)
where
A= )n An p[1+sin’ w sin*(u-y,) — (12)

(sin[A6) AO)x{cos(2¢,) + sin” w sin*(u-y,)}]
is the phase retardation obtained by integrating
(2) on conditions (9a,10a), 40 = 6, - 6,
cos@,= cosy cos O, +siny sinb,cos(u—y) (13)
6, =6+ 0))/2,
cos u = x/Ax*+y")"?;
sinu = y/(x2+y2)1/2; (14)
cos w=d(x*+y* +d)"*;
sin = (A2 (0P +d)2
p =(x*+y*+d*)"* is the radius-vector of a given
point of the conoscopic pattern, 6,=(8, + 6,)/2,
Sin2yp.q =2(x cosOpy— d sinbyacosy.qa) (v cosOq
—dsinGyq siny) | [(xcosGpa— d sinby, cosyo,d)2 +
+(v cosOyq— d sin6y 4 sinyyq)’] (15)

The system of equations (11-15) is the
algorithm for the computation of the conoscopic
pattern of a twisted hybrid cell. At y=y, these
equations describe a hybrid cell. The calculated
and experimental conoscopic pattern of the
hybrid cell with 6,=0°, 6;790°, y= y;= 45° for
d=25um, An=0.18, n=1.5, A=0.6um are shown
in Fig. 4a,b. In principle, equation (11) can be
applied to any continuously distorted nematic
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cell. If the distribution of the director is known,

the phase retardation can be calculated

analytically or numerically and substituted into
(11). The equation for the isochromes is:

sin’[A,/ 2] =0 (16)
The term sin’[ g4 — yo] in (11) decreases the
contrast of the conoscopic pattern. Two

equations: y, =0, ys,=0 describe the isogyres.
When 6, 6, the isogyres pair off into two sets
of two brushes intersected in the points with
coordinates xg,=dtg0),cosYo.a Vo.a=dtg O Sinyya
respectivelly (Fig.4 e). The distance between
these points on the screen is proportional to the
difference tg@, — tg@, These features can be
used for the characterization of quasi-homeo-
tropic cell as a test for hybridity. The phase
retardation of a hybrid cell does not depend on
6y or g, but is a function of the average angle
6.=(6, + 6,)/2, while the location of the isogyres
depends on 6, and €,, When the isogyres are
observed the hybridity is visualized. For a quasi-
planar cell (6, =n/2, xpq —0, ypa —0) the
isogyres are not seen. As a result the hybridity
of the quasi-planar cell is not displayed on the
conoscopic pattern. From Fig. 4 ¢, d it is seen
that the simulated conoscopic pattern of the cell
with 6)=6, =87.5° (Fig. 4 d) is equivalent to the
picture of the cell with 6,=85°, 0,~90° (i.e with
the average angle 6,=87.5° (Fig. 4 ¢)). The light
intensity distribution is symmetrical with respect
to the point (x4, corresponding to the angle
6,=87.5°.

2.3. Hybrid cell under transverse field

In most practical cases the orientation of the di-
rector in a nematic cell under an external field
(magnetic or electric) is a non-analitical function
of the distance from the limitting surfaces and is
defined by the competition of the orienting acti-
on of the field and of the substrates. The director
distribution can be obtained by the free energy
minimization. The exact solution of the Euler-
Lagrange equation implies numerical calculati-
ons. At these calculations it is usually assumed
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that the director distribution is a two dimensio-
nal one. At high fields in the middle of the cell
and far from the substrates the director is orien-
ted practically along (Ae>0) the field direction.
In the hybrid cell under transverse electric field
the director deformation is located in a thin layer
near the substrate with planar surface conditions.
The polar angle &, of the director on the surface
as well as the thickness of the layer containing
the deformation decrease when the field strength
increases. The optical properties of hybrid cell
of thickness d under the field can be modeled by
a pile of two nematic layers, namely: a homeo-
tropic layer of thickness /# and a hybrid one with
the limitting polar angles 6y, m/2 of the thickness
d-h. The phase retardation of the cell is:

Ag=(2 7 /A)(nAn/cos ) [hsinz w+(d-h){11/2)*
[C. «(sinA0/ AQ)(b sin26, + C. cos(260,)]}] (17)

where

C. = cos’ v+ sin’ 74 cosz(u- Y0);
C. = cos® w— sin’ 7 cosz(u- Y0);
b = sin2y cos(u-yy).

siny and cosy are given by equations (14).
Here A0 = 6,, ,=6,/2. The azimuths y, and y,
can be calculated from Eq. (15). The procedure
of the change of 6, and 4 models the variation of
the field strength. Collating &, and /7 we
obtained computer simulated conoscopic figures
simillar to the experimental pictures (see for
example Fig. 5a and 5b).

We applied electric field to the hybrid ne-
matic (dielectric anizotropy A&>0) cell and ob-
served the transformations of the conoscopic
pattern. We show three experimental conoscopic
patterns of the hybrid cell at zero (Fig.4b); inter-
mediate, (Fig.5b); and high, (Fig.5¢) voltages. In
this paper we represent the computed figures
only as an illustration of the validity of the
algorithms without detailed discussion of the
experimental and simulated figures. This study
is subject of our forthcoming paper.

Ukr. J. Phys. Opt. V2. Na2

Fig.5. Computed (a, 6=89°, 6,=0°, h=24um,
d=25um) and experimental (b, 8V and c,
48V) conoscopic patterns for the hybrid cell
under electric field (=100 kHz).
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3. Conclusion

We proposed the algorithm for computer
simulations of the conoscopic patterns of the
distorted nematic cells. The validity of the
algorithm is demonstrated by the comparisson of
the computed and corresponding experimental
conoscopic patterns. The conoscopy can be used
as a test for hybridity in a quasi homeotropic
cell, and for twist in any continuously distorted
nematic cell even when the distortion cannot be

characterized by conventional polarization
microscopy.
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