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Abstract

In this paper we present optoelectronic measurement system for monitoring the industrial
gas pollutants. The system consists of a source of light, an optical fiber as a data
transmission link, a spectrometer, an optical detection system and a neural network unit for
a real-time spectral data processing. We have paid the major attention to the neural network
structure and its properties in gas recognition and gas concentration estimation.
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1. Introduction

During last few years, the interest in developing
technologies which can decrease the gaseous
pollutants emission to the atmosphere, is
growing. New, lower emission limits introduced
tend to

existing

in many countries, continuous

improvement of the industrial
installations. For the same reason, the increasing
demand for flexible, easy to maintain air
pollution monitoring systems, is observed on the
market. Often, modern solutions of these sys-
tems are installed as a part of the technological
process control and then the quantity of emission
is one of the variables in a control algorithm. In
that case, data analysis time is of the same
importance as precision of the estimation of
pollutants concentration. It is especially true,
when the control system needs to know if
emission limit was exceeded for several different
gases. Among many monitoring techniques,
optical measurements seem to be superior,

offering high precision, repeatability of measure-
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ments in conjunction with non-intrusive inter-
action with monitoring media. Optical measure-
ment heads together with optical fibers show
high reliability and immunity on the industrial
disturbances (electromagnetic field, temperature,
etc.) and become not only new alternative for
"ordinary" methods but have created a new
quality standard [1]. Additionally, a single
optical measurement path can carry a big amount
of data in entirely parallel manner (e.g. spectral
response of light in an absorbing media).
Unfortunately, even fast electronic chips are not
able to handle a real-time (or fast enough)
computing a huge number of data sets delivered
by an optical system, especially when one wants
to analyze several gas pollutants in changing
measurement conditions (variable temperature,
etc.).

solutions, ensuring parallel evaluation of data

pressure, humidity, One of possible

with a lot of components (i.e. spectral data set)

are neural nets (NN) [2]. Among many possible

neural architectures, the counterpropagation net
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(CP) with a few described modifications have
been chosen. The CP net can classify data sets
and find correlation between their vector
components. Relationships of data can remain
unknown what is an important advantage for all
cases of variable measurement conditions. The
quality of the neural network performance
depends on its training process and it includes a
number of neurons. A data given by analysts
inside the network is entirely parallel and it is
fault tolerantly covering noisy data. Conjunction
of elements described above, the optical
detection unit, the optical fiber and the hardware
implemented neural net, gives way to the
development

of relatively cheap, easy to

maintain, reliable measurement system.

2. The measurement system description

2.1 System principles

The physical background of measurement is very
well known and based on Beer-Lambert—
Bourger law of exponential attenuation for the

light passing through an absorbing medium.
I(L,A)=1y(4)-exp(~c5,L) (1)

where /)(/) is incident light intensity, /(L, A) is a
transmitted light intensity after passage through
an optical path-length L in the medium, c is the
concentration of an absorber, 3, is the absorption
cross section at the specified wavelength. From
the point of view of an environment protection

two gases are being considered SO, and NO,.

2.2 System configuration

The system is shown on Fig.1 and consists of the
optical detection system, the optical fiber link,
the optoelectronic data analysis unit and the
graphical user interface.

Depending on expected concentration level,
single or double (with retroreflector) optical path
can be employed. In order to simultaneous

determinated presence and concentration of
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several gas pollutants, a broad band light source
is to be used. Spectral region and wavelength
range has influence on the choice of a light
source, an optical fiber, a diode array detector
and spectrometer parameters. Of course, that
choice is to be made taking into consideration
the absorption media parameters and features of
the monitored gases. In our case SO, and NO,
are being monitored. As it can be seen the

required bandwidth is from 270nm to 600nm.

The light, after passing through the optical
path in the absorber, is collected into the optical
fiber,

measurement head and with the spectrometer.

which is then connected with the
Questions of light source to fibre coupling are
not considered here, detailed analysis of the
problem can be found in [3]. After passing
through an input slit the light is being diffracted
on a grating. The spectrometer includes the 32
diode array as a light detector. Diode array forms
an input layer of the neural network. Digital
signal processor unit normalizes the NN input
and serves as the intelligent output interface for

a graphical user interface (GUI).

According to the grating properties this
spectrometer theoretically can cover a range
from 200nm to 730nm. Yet spectral attenuation
of the fiber itself sets lower limit to about
220nm. Absorption peaks of oxygen, because of
it small concentration in flue gases, does not
limit the bandwidth. Spectral resolution results
N 750 —120

32

the device ranges from 10 to 600 milliseconds

~17nm . The integration time of

and resulting signal, thus accuracy, is directly
proportional to this time. In harsh industrial
conditions such solution has a principle
advantage — no movable mechanical parts.
Additionally it combines advantages of ,,in situ”

methods and extraction methods.
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Fig.1. Schematic diagram of example application of the neural

based optical

measurement system for determination of presence and concentration of gases in the

power plant chimney.

3. The counterpropagation neural
network algorithm

Conditions changing during the measurement
and number of gases taken into account
complicate the learning process of the net. We
of knowledge

generalisation inside neural network will be of a

assume that the properties

great advantage. Nevertheless, the utilisation of

the most popular error backpropagation
algorithm and perceptron-like feedforward net
could be the time consuming task, especially for
bigger structures. Better solution could be
obtained if the network would have a fast
feature. The

networks of that kind are called self-organising

internal data representation
nets (e.g. Kohonen net). For our purposes,
another layer is necessary. The output signals
should inform about the detected gas and its
concentration. It can not be done basing only on

the internal feature map of the self-organising

layer. A neural network fulfilling above
conditions (among others) is a socalled
counerpropagation net (CP).

Counterpropagation was originally

proposed as a pattern-lookup system that takes

advantage of the parallel architecture of neural
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networks. For our implementation we use a
modified version of the CP network. Two types
of layers are used (Fig.2): the hidden layer is a
Kohonen layer with competitive units that do
unsupervised learning, the output layer is a
Grossberg layer, which is fully connected with
the hidden layer.

each unit from i-th layer
is connected with each
unit from j-th layer

(for the sake of simplicity some
connections are not shown)

itk

Fig.2. Example diagram of the
counterpropagation neural net. The
structure consists of 16 input units,

8x8 units competition
4 outputs units.

layer and
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Additionally, there is the input layer which
is fully connected with the hidden layer but there
is no computation inside it. Input layer can be
integrated with the diode array because the
number of inputs is equal to the number of array
outputs. When presented with a pattern (e.g.
single absorption spectra), the network classifies
that pattern using a learned reference vector. The
hidden units play a key role in this process, since
the hidden layer perform a competitive classifi-
cation to group the patterns.

3.1 Network operation principles

Being trained, the network works as follows.
After presentation of a pattern in the input layer,
the units in the hidden layer sum their inputs
according to

net ; = Zwl] -0, (2)

1

where i is the number of inputs (number of
neurons) in the input layer, j is the number of
units in the hidden layer, net; denotes the input
of j-th unit (neuron) in the hidden layer, w;; the
weight of the link from i-th unit to j-th unit,
and o; is output of i-th unit in input layer
(i-th element of the input pattern).

In the standard CP algorithm, the unit with
the highest net input wins and its activation is set
to 1 while all others are set to 0 (winner takes all
the rule). After the competition, the output layer
does a weight sum on the outputs of the hidden
layer.

a, =net;, = ijk "0; (3)
1

where k£ is a number of outputs (number of

neurons in the output layer), a; is an activation

function of k-th output unit (we used the

sigmoidal function).

Let ¢ be the index of the winning hidden
layer neuron. Since o. is the only non-zero
element in the sum, which in turn is equal to
one, this can be reduced to:

A=Wk 4)

Thus the winning hidden unit activates a
pattern in the output layer. As it was mentioned
above, we have introduced some modifications
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to the standard algorithm. We replaced Winner-
Takes-All layer (hidden layer) by the Kohonen
self organizing map. That layer offers two
additional features:

— during learning process not only the winning
neuron in the hidden layer is able to change its
weight but all weights of neurons in the
neighborhood of the winning one are changed as
well (a neighborhood dimension is defined as a
learning parameter and it decreases during the
learning process),

modified
allowing more than one neuron to be activated at

— the winner-takes-all rule was
the same time; thanks to this the output layer is
not only stimulated by the winning neuron but it
can approximate a few links (it expands number
of classes, the network can recognize the number
of units in the hidden layer).

3.2 Network training process

Before starting the learning process, it is
important to initialize the competitive layer with
normalized weights. The input vector is to be
normalized to ensure proper feature selection,
too. The input pattern vectors are presented to all
competitive units in parallel and the best
matching unit is chosen as the winner. Since the
vectors are normalized, the similarity between
the normalized input vector X = (x;) and the
reference unit ;= (w;) can be calculated using
the dot product:

1

The topological order is achieved by using a

spatial neighborhood relation between the
competitive unit during learning. Not only the
best-matching vector, with weight . but also its

neighborhood, is adapted [4],
Aw; ; (t)=ele)- (x,- (t)- Wi (t)) forj € N¢ (6)
4w, ;(t)=0 forj ¢ N, (7)

J

where e, (¢)= h(t)-e(’(’)J

J
function, d; is the

is the Gaussian

distance between W;

49



W.Wjcik, Z.Gotra, M.Duk, A.Kotyra, S.W.Przytlucki, A.Smolarz

and winner W, , h(t) is the adaptation height at
time ¢, r(t) is the radius of the spectral
neighborhood N. at time ¢ and N, is the
definition of the neighborhood.

The adaptation height and radius are usually
decreased over time to enforce the clustering
process. All described procedures are called an
unsupervised learning. The output layer is taught
according to supervising learning algorithm. The
output of the network is computed (Eqn. (3)) and
compared to the target pattern. The weights
between the competition layer units and the
output units are updated according to

ij(Hl):W‘/k(f)Jrﬂ'(Ok—ij(f)) ®)

where B is the learning parameter describing the
basic weight adaptation step.

4. Results of performance simulation of
the measurement system.

All data sets for the system simulation were
taken in ,,Kozienice” Power Plant. The optical

OPSIS AB
which estimate the

detection system based on
monitoring equipment,
pollutants emission by the differential optical
absorption spectroscopy (DOAS) [1]. That
system was also a source of the target data set
for testing data pattern during estimation of total
system performance. All measurements have
been made in the UV region and two main gas
pollutants were taken into account: nitrogen
dioxide — NO, and sulfur dioxide — SO,. A broad
band light source consists of high pressure 150W
xenon lamp and a light collimating system.

Germanium doped optical fiber, 15m long, was

used to transmit the light from the optical head

to the spectrometer. The prototype spectrometer
includes a monochromator which diffracts the
light and focuses it onto 32 elements diode array.

Spectral data for pure gases were used to create

the teaching patterns. The simulation process

requires at least two different pattern sets:

1. the teaching pattern consisting of 250 spectral
characteristics of NO,. and 250 spectral
characteristics of SO,, both with increasing
concentration;
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2. the validation pattern consisting of 1000
measured gas pollutants spectral
characteristics.

Presented results were obtained with the CP
network, with a size of 32 units in the input
layer, 16x16 units in the Kohonen layer and 2
units in the Grossberg layer. The learning
process included 10 000 steps with random
choice of one spectrum. After the training of the
CP, each unit in the two dimensional compe-
tition layer is identified with the type of gas and
its concentration represented by this unit. Each
output unit represent a specific gas and the value
of the unit activation function informs the
recognized gas concentration. For our teaching
pattern, the Kohonen layer has found two
different configurations and begins to arrange
spectral data in different regions. The NN is able
to distinguish two gases. The area of recognition
of the first gas (Fig.3 left) is separated from the
area of recognition of the second gas
(Fig.3 right).  Additionally, different
represent different concentrations (different gray

units

levels). Next, the recognition of two gases is
verified by applying the validation pattern.
In 91.82% the NN recognizes the right gas with
an error less than 5%. Another important
question is to be answered, is dealing with the
optimal network architecture. Using the same
patterns, we estimate the performance of the
CP network of different architectures. As the
overall quality index of network performance,
we choose the root mean square error (RMS).
Our test has covered the CP network with
32 input neurons, 2 output neurons and
a variable number of neurons in the competition
layer, from 4x4 to 16x16 units. The results
set of the

active neurons in competition layer generate

are presented on Fig.4. Each

a network output. The number of possible
solution depends on the number of neurons in
the hidden layer and a kind of adopted
neighborhood function. This is the reason why a
small number of neurons produces a bigger
error.
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Fig.3. Clustering of the competition layer for NO, (left) and for SO, (right).
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Fig.4. The relative output error as a function of the number of neurons

in the competition layer

The network output error decreases as the
number of neurons increases but as it can be
seen after a certain dimension further adding of
neurons to the competition layer do not
significantly improve the quality of the output

signal.

5. Conclusions

The counterpropagation neural network seems to
be a good solution for evaluation of spectral data
concerning the problems of flexibility, quality

and performance. Spectral data can be
recognized in real time by a learned CP net. The
network validates noisy data. That is an

important fact because every measurement can
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vary in several parameters. That usually makes
"conventional" serial computing time consuming
and requires a big amount of memory. The
bitstream encoding allows considerable reduc-
tion of hardware required. Yet, even very com-
plicated numerical solution can not anticipate all
possible measurement conditions. That is the
reason why, the reference data sets, which are
fitting numerically to real spectral data, are not
completed. That usually leads to evaluation
errors [5].
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