Ukrainian Journal of Physical Optics


2026 Volume 27, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

VIBRATIONAL COOLING OF RbCs MOLECULES

Omama Al Kharusi, Ridha Horchani, Uduakobong S. Okorie and Akpan N. Ikot


ABSTRACT

We theoretically investigate the vibrational cooling of RbCs molecules formed via the photoassociation of Rb and Cs atoms. A sample of cold molecules, initially distributed across multiple vibrational levels, can be transferred into a specific vibrational level of the singlet ground electronic state, X1+. This is achieved by repeated optical pumping with a laser light spectrum broad enough to excite all populated vibrational levels except the target one. The results show that this cooling method achieves an efficiency of nearly 90 %

Keywords: optical pumping, vibrational cooling, molecules

UDC: 621.373.826

    1. Carr, L. D., DeMille, D., Krems, R. V., & Ye, J. (2009). Cold and ultracold molecules: science, technology and applications. New Journal of Physics, 11(5), 055049.
      doi:10.1088/1367-2630/11/5/055049
    2. Jin, D. S., & Ye, J. (2012). Introduction to ultracold molecules: new frontiers in quantum and chemical physics. Chemical Reviews, 112(9), 4801-4802.
      doi:10.1021/cr300342x
    3. Quéméner, G., & Julienne, P. S. (2012). Ultracold molecules under control!. Chemical Reviews, 112(9), 4949-5011.
      doi:10.1021/cr300092g
    4. Landisman, C. E., & Connors, B. W. (2005). Long-term modulation of electrical synapses in the mammalian thalamus. Science, 310(5755), 1809-1813.
      doi:10.1126/science.1114655
    5. Tannor, D. (1999). Laser cooling of internal degrees of freedom of molecules by dynamically trapped states. Faraday Discussions, 113, 365-383.
      doi:10.1039/a902103e
    6. Morigi, G., Pinkse, P. W., Kowalewski, M., & de Vivie-Riedle, R. (2007). Cavity cooling of internal molecular motion. Physical Review Letters, 99(7), 073001.
      doi:10.1103/physrevlett.99.073001
    7. Bartana, A., Kosloff, R., & Tannor, D. J. (1993). Laser cooling of molecular internal degrees of freedom by a series of shaped pulses. The Journal of Chemical Physics, 99(1), 196-210.
      doi:10.1063/1.465797
    8. Baranov, M., Góral, K., Santos, L., & Lewenstein, M. (2002). Ultracold dipolar gases–a challenge for experiments and theory. Physica Scripta, 2002 (T102), 74.
      doi:10.1238/physica.topical.102a00074
    9. Góral, K., Santos, L., & Lewenstein, M. (2002). Quantum phases of dipolar bosons in optical lattices. Physical Review Letters, 88(17), 170406.
      doi:10.1103/physrevlett.88.170406
    10. Barnett, R., Petrov, D., Lukin, M., & Demler, E. (2006). Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Physical Review Letters, 96(19), 190401.
      doi:10.1103/physrevlett.96.190401
    11. Micheli, A., Pupillo, G., Büchler, H. P., & Zoller, P. (2007). Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Physical Review A – Atomic, Molecular, and Optical Physics, 76(4), 043604.
      doi:10.1103/physreva.76.043604
    12. Gregory, P. D., Aldegunde, J., Hutson, J. M., & Cornish, S. L. (2016). Controlling the rotational and hyperfine state of ultracold Rb87Cs133 molecules. Physical Review A, 94(4), 041403.
      doi:10.1103/PhysRevA.94.041403
    13. Molony, P. K., Gregory, P. D., Ji, Z., Lu, B., Köppinger, M. P., Le Sueur, C. R., Blackley, C. L., Hutson, J. M., & Cornish, S. L. (2014). Creation of ultracold Rb⁸⁷Cs¹³³ molecules in the rovibrational ground state. Physical Review Letters, 113(25), 255301.
      doi:10.1103/physrevlett.113.255301
    14. Park, J. W., Will, S. A., & Zwierlein, M. W. (2015). Ultracold dipolar gas of fermionic Na 23 K 40 molecules in their absolute ground state. Physical Review Letters, 114(20), 205302.
      doi:10.1103/PhysRevLett.114.205302
    15. Guo, M., Zhu, B., Lu, B., Ye, X., Wang, F., Vexiau, R., Bouloufa-Maafa, N., Quéméner, G., Dulieu, O., & Wang, D. (2016). Creation of an ultracold gas of ground-state dipolar Na²³Rb⁸⁷ molecules. Physical Review Letters, 116(20), 205303.
      doi:10.1103/physrevlett.116.205303
    16. Ospelkaus, S., Ni, K. K., Wang, D., de Miranda, M. H. G., Neyenhuis, B., Quéméner, G., Julienne, P. S., Bohn, J. L., Jin, D. S., & Ye, J. (2010). Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science, 327(5967), 853-857.
      doi:10.1126/science.1184121
    17. Thorsheim, H. R., Weiner, J., & Julienne, P. S. (1987). Laser-induced photoassociation of ultracold sodium atoms. Physical Review Letters, 58(23), 2420.
      doi:10.1103/physrevlett.58.2420
    18. Maioli, P., Meunier, T., Gleyzes, S., Auffèves, A., Nogues, G., Brune, M., Raimond, J. M., & Haroche, S. (2005). Nondestructive Rydberg atom counting with mesoscopic fields in a cavity. Physical Review Letters, 94(11), 113601.
      doi:10.1103/physrevlett.94.113601 J
    19. Jones, K. M., Tiesinga, E., Lett, P. D., & Julienne, P. S. (2006). Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Reviews of Modern Physics, 78(2), 483-535.
      doi:10.1103/revmodphys.78.483
    20. Aikawa, K., Akamatsu, D., Hayashi, M., Oasa, K., Kobayashi, J., Naidon, P., Ueda, M., & Inouye, S. (2010). Coherent transfer of photoassociated molecules into the rovibrational ground state. Physical Review Letters, 105(20), 203001.
      doi:10.1103/physrevlett.105.203001
    21. Patterson, D., & Doyle, J. M. (2007). Bright, guided molecular beam with hydrodynamic enhancement. The Journal of Chemical Physics, 126(15).
      doi:10.1063/1.2717178
    22. Yamakita, Y., Takahashi, R., Ohno, K., Procter, S. R., Maguire, G., & Softley, T. P. (2007). Cooling effects in the Stark deceleration of Rydberg atoms/molecules with time-dependent electric fields. In Journal of Physics: Conference Series (Vol. 80, No. 1, p. 012045). IOP Publishing.
      doi:10.1088/1742-6596/80/1/012045
    23. Bethlem, H. L., Berden, G., & Meijer, G. (1999). Decelerating neutral dipolar molecules. Physical Review Letters, 83(8), 1558.
      doi:10.1103/physrevlett.83.1558
    24. van Veldhoven, J., Bethlem, H. L., & Meijer, G. (2005). AC electric trap for ground-state molecules. Physical Review Letters, 94(8), 083001.
      doi:10.1103/physrevlett.94.083001
    25. Narevicius, E., Libson, A., Parthey, C. G., Chavez, I., Narevicius, J., Even, F. U., & Raizen, M. G. (2008). Stopping supersonic beams with a series of pulsed electromagnetic coils: an atomic coilgun. Physical Review Letters, 100(9), 093003.
      doi:10.1103/physrevlett.100.093003
    26. Sawyer, B. C., Lev, B. L., Hudson, E. R., Stuhl, B. K., Lara, M., Bohn, J. L., & Ye, J. (2007). Magnetoelectrostatic trapping of ground state OH molecules. Physical Review Letters, 98(25), 253002.
      doi:10.1103/physrevlett.98.253002
    27. Vanhaecke, N., Meier, U., Andrist, M., Meier, B. H., & Merkt, F. (2007). Multistage Zeeman deceleration of hydrogen atoms. Physical Review A – Atomic, Molecular, and Optical Physics, 75(3), 031402.
      doi:10.1103/physreva.75.031402
    28. Fulton, R., Bishop, A. I., Shneider, M. N., & Barker, P. F. (2006). Controlling the motion of cold molecules with deep periodic optical potentials. Nature Physics, 2(7), 465-468.
      doi:10.1038/nphys339
    29. DeMille, D. (2002). Quantum computation with trapped polar molecules. Physical Review Letters, 88(6), 067901.
      doi:10.1103/physrevlett.88.067901
    30. DeMille, D., Doyle, J. M., & Sushkov, A. O. (2017). Probing the frontiers of particle physics with tabletop-scale experiments. Science, 357(6355), 990–994.
      doi:10.1126/science.aal3003
    31. Gorshkov, A. V., Manmana, S. R., Chen, G., Demler, E., Lukin, M. D., & Rey, A. M. (2011). Quantum magnetism with polar alkali-metal dimers. Physical Review A, 84(3), 033619.
      doi:10.1103/physreva.84.033619
    32. Hudson, E. R., Lewandowski, H. J., Sawyer, B. C., & Ye, J. (2006). Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Physical Review Letters, 96(14), 143004.
      doi:10.1103/physrevlett.96.143004
    33. Hughes, M., Frye, M. D., Sawant, R., Bhole, G., Jones, J. A., Cornish, S. L., Tarbutt, M. R., Hutson, J. M., Jaksch, D., & Mur-Petit, J. (2020). Robust entangling gate for polar molecules using magnetic and microwave fields. Physical Review A, 101(6), 062308.
      doi:10.1103/physreva.101.062308
    34. Macià, A., Hufnagl, D., Mazzanti, F., Boronat, J., & Zillich, R. E. (2012). Excitations and stripe phase formation in a two-dimensional dipolar Bose gas with tilted polarization. Physical Review Letters, 109(23), 235307.
      doi:10.1103/physrevlett.109.235307
    35. McDonald, M., McGuyer, B. H., Apfelbeck, F., Lee, C.-H., Majewska, I., Moszynski, R., & Zelevinsky, T. (2016). Photodissociation of ultracold diatomic strontium molecules with quantum state control. Nature, 535(7611), 122–126.
      doi:10.1038/nature18314
    36. Yelin, S. F., Kirby, K., & Côté, R. (2006). Schemes for robust quantum computation with polar molecules. Physical Review A, 74(5), 050301.
      doi:10.1103/physreva.74.050301
    37. Sage, J. M., Sainis, S., Bergeman, T., & DeMille, D. (2005). Optical production of ultracold polar molecules. Physical Review Letters, 94(20), 203001.
      doi:10.1103/physrevlett.94.203001
    38. Ni, K. K., Ospelkaus, S., De Miranda, M. H. G., Pe’er, A., Neyenhuis, B., Zirbel, J. J., Kotochigova, S., Julienne, P. S., Bohn, J. L., Jin, D. S., & Ye, J. (2008). A high phase-space-density gas of polar molecules. Science, 322(5899), 231-235.
      doi:10.1126/science.1163861
    39. Banerjee, J., Rahmlow, D., Carollo, R., Bellos, M., Eyler, E. E., Gould, P. L., & Stwalley, W. C. (2012). Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state. Physical Review A – Atomic, Molecular, and Optical Physics, 86(5), 053428.
      doi:10.1103/physreva.86.053428
    40. Deiglmayr, J., Grochola, A., Repp, M., Mörtlbauer, K., Glück, C., Lange, J., Dulieu, O., Wester, R., & Weidemüller, M. (2008). Formation of ultracold polar molecules in the rovibrational ground state. Physical Review Letters, 101(13), 133004.
      doi:10.1103/physrevlett.101.133004
    41. Bruzewicz, C. D., Gustavsson, M., Shimasaki, T., & DeMille, D. (2014). Continuous formation of vibronic ground state RbCs molecules via photoassociation. New Journal of Physics, 16(2), 023018.
      doi:10.1088/1367-2630/16/2/023018
    42. Fioretti, A., & Gabbanini, C. (2013). Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation. Physical Review A – Atomic, Molecular, and Optical Physics, 87(5), 054701.
      doi:10.1103/physreva.87.054701
    43. Kerman, A. J., Sage, J. M., Sainis, S., Bergeman, T., & DeMille, D. (2004). Production of Ultracold, Polar RbCs* Molecules via Photoassociation. Physical review letters, 92(3), 033004.
      doi:10.1103/physrevlett.92.153001
    44. Liu, Y., Gong, T., Ji, Z., Wang, G., Zhao, Y., Xiao, L., & Jia, S. (2019). Production of ultracold 85Rb133Cs molecules in the lowest ground state via the B1Π1 short-range state. The Journal of Chemical Physics, 151(8).
      doi:10.1063/1.5108637
    45. Zabawa, P., Wakim, A., Haruza, M., & Bigelow, N. P. (2011). Formation of ultracold X 1 Σ+(v′′= 0) NaCs molecules via coupled photoassociation channels. Physical Review A – Atomic, Molecular, and Optical Physics, 84(6), 061401.
      doi:10.1364/ls.2012.ltu4i.2
    46. Stwalley, W. C., Banerjee, J., Bellos, M., Carollo, R., Recore, M., & Mastroianni, M. (2009). Resonant coupling in the heteronuclear alkali dimers for direct photoassociative formation of X(0,0) ultracold molecules. The Journal of Physical Chemistry A, 114(1), 81–86.
      doi:10.1021/jp901803f
    47. Cournol, A., Pillet, P., Lignier, H., & Comparat, D. (2018). Rovibrational optical pumping of a molecular beam. Physical Review A, 97(3), 031401.
      doi:10.1103/physreva.97.031401
    48. Courageux, T., Cournol, A., Comparat, D., de Lesegno, B. V., & Lignier, H. (2022). Efficient rotational cooling of a cold beam of barium monofluoride. New Journal of Physics, 24(2), 025007.
      doi:10.1088/1367-2630/ac511a
    49. Sofikitis, D., Fioretti, A., Weber, S., Viteau, M., Chotia, A., Horchani, R., Akan, D., & Pillet, P. (2009). Broadband vibrational cooling of cold cesium molecules: theory and experiments. Chinese Journal of Chemical Physics, 22(2), 149.
      doi:10.1088/1674-0068/22/02/149-156
    50. Sofikitis, D., Weber, S., Fioretti, A., Horchani, R., Allegrini, M., Chatel, B., & Pillet, P. (2009). Molecular vibrational cooling by optical pumping with shaped femtosecond pulses. New Journal of Physics, 11(5), 055037.
      doi:10.1088/1367-2630/11/5/055037
    51. Fioretti, A., Sofikitis, D., Horchani, R., Li, X., Pichler, M., Weber, S., Horchani, R., & Pillet, P. (2009). Cold cesium molecules: from formation to cooling. Journal of Modern Optics, 56(18-19), 2089-2099.
      doi:10.1080/09500340903156822
    52. Sofikitis, D., Horchani, R., Li, X., Pichler, M., Allegrini, M., Fioretti, A., & Pillet, P. (2009). Vibrational cooling of cesium molecules using noncoherent broadband light. Physical Review A, 80(5), 051401.
      doi:10.1103/physreva.80.051401
    53. Sofikitis, D., Fioretti, A., Weber, S., Horchani, R., Pichler, M., Li, X., & Pillet, P. (2010). Vibrational cooling of cold molecules with optimised shaped pulses. Molecular Physics, 108(6), 795-810.
      doi:10.1080/00268971003689899
    54. Lignier, H., Fioretti, A., Horchani, R., Drag, C., Bouloufa, N., Allegrini, M., Chotia, A., & Comparat, D. (2011). Deeply bound cold caesium molecules formed after resonant coupling. Physical Chemistry Chemical Physics, 13(42), 18910-18920.
      doi:10.1039/c1cp21488h
    55. Manai, I., Horchani, R., Lignier, H., Pillet, P., Comparat, D., Fioretti, A., & Allegrini, M. (2012). Rovibrational cooling of molecules by optical pumping. Physical review letters, 109(18), 183001.
      doi:10.1103/physrevlett.109.183001
    56. Manai, I., Horchani, R., Hamamda, M., Fioretti, A., Allegrini, M., Lignier, H., Bouloufa, N., & Comparat, D. (2013). Laser cooling of rotation and vibration by optical pumping. Molecular Physics, 111(12-13), 1844-1854.
      doi:10.1080/00268976.2013.813980
    57. Horchani, R. (2016). Cold molecules: Formation, ro-vibrational cooling and electronic conversion. International Journal of Modern Physics B, 30(14), 1630010.
      doi:10.1142/s0217979216300103
    58. Viteau, M., Chotia, A., Allegrini, M., Bouloufa, N., Dulieu, O., Comparat, D., & Pillet, P. (2008). Optical pumping and vibrational cooling of molecules. Science, 321(5886), 232-234.
      doi:10.1126/science.1159496
    59. Wakim, A., Zabawa, P., Haruza, M., & Bigelow, N. P. (2012). Luminorefrigeration: vibrational cooling of NaCs. Optics Express, 20(14), 16083-16091.
      doi:10.1364/oe.20.016083
    60. Brif, C., Chakrabarti, R., & Rabitz, H. (2010). Control of quantum phenomena: past, present and future. New Journal of Physics, 12(7), 075008.
      doi:10.1088/1367-2630/12/7/075008
    61. Comparat, D. (2014). Molecular cooling via Sisyphus processes. Physical Review A, 89(4), 043410.
      doi:10.1103/physreva.89.043410
    62. Travers, J. C. (2010). Blue extension of optical fibre supercontinuum generation. Journal of Optics, 12(11), 113001.
      doi:10.1088/2040-8978/12/11/113001

    Теоретично досліджене коливне охолодження молекул RbCs, утворених внаслідок фотоасоціації атомів Rb та Cs. Холодні молекули, спочатку розподілені по кількох коливних рівнях, можуть бути переведеними на певний коливний рівень синглетного основного електронного стану X1+. Це досягається шляхом багаторазового оптичного нагнітання лазерним випромінюванням зі спектром, достатньо широким для збудження всіх заселених коливних рівнів крім цільового. Як свідчать отримані результати, ефективність цього методу охолодження може наближатися до 100%. оптичне нагнітання, коливне охолодження, молекули

    Ключові слова: оптичне нагнітання, коливне охолодження, молекули


This work is licensed under CC BY 4.0