Ukrainian Journal of Physical Optics
2026 Volume 27, Issue 2
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
VIBRATIONAL COOLING OF RbCs MOLECULES
Omama Al Kharusi, Ridha Horchani, Uduakobong S. Okorie and Akpan N. Ikot
Author Information
1,2,TOmama Al Kharusi
,
1,*Ridha Horchani
,
3Uduakobong S. Okorie
,
4Akpan N. Ikot
1Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod, P. C. 123, Muscat, Sultanate of Oman 2Department of Applied Mathematics and Science, National University of Science and Technology, Al Hail, Al Seeb, 111, Muscat, Sultanate of Oman 3Department of Physics, University of South Africa, Florida, 1710, Johannesburg, South Africa 4Theoretical Physics Group, Department of Physics, University of Port Harcourt, Rivers State, Nigeria
1Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod, P. C. 123, Muscat, Sultanate of Oman 2Department of Applied Mathematics and Science, National University of Science and Technology, Al Hail, Al Seeb, 111, Muscat, Sultanate of Oman 3Department of Physics, University of South Africa, Florida, 1710, Johannesburg, South Africa 4Theoretical Physics Group, Department of Physics, University of Port Harcourt, Rivers State, Nigeria
Ukr. J. Phys. Opt.
Vol. 27
,
Issue 2 , pp. 02023 - 02034 (2026).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2026.02023
ABSTRACT
We theoretically investigate the vibrational cooling of RbCs molecules formed via the photoassociation of Rb and Cs atoms. A sample of cold molecules, initially distributed across multiple vibrational levels, can be transferred into a specific vibrational level of the singlet ground electronic state, X1∑+. This is achieved by repeated optical pumping with a laser light spectrum broad enough to excite all populated vibrational levels except the target one. The results show that this cooling method achieves an efficiency of nearly 90 %
Keywords:
optical pumping, vibrational cooling, molecules
UDC:
621.373.826
- Carr, L. D., DeMille, D., Krems, R. V., & Ye, J. (2009). Cold and ultracold molecules: science, technology and applications. New Journal of Physics, 11(5), 055049.
doi:10.1088/1367-2630/11/5/055049 - Jin, D. S., & Ye, J. (2012). Introduction to ultracold molecules: new frontiers in quantum and chemical physics. Chemical Reviews, 112(9), 4801-4802.
doi:10.1021/cr300342x - Quéméner, G., & Julienne, P. S. (2012). Ultracold molecules under control!. Chemical Reviews, 112(9), 4949-5011.
doi:10.1021/cr300092g - Landisman, C. E., & Connors, B. W. (2005). Long-term modulation of electrical synapses in the mammalian thalamus. Science, 310(5755), 1809-1813.
doi:10.1126/science.1114655 - Tannor, D. (1999). Laser cooling of internal degrees of freedom of molecules by dynamically trapped states. Faraday Discussions, 113, 365-383.
doi:10.1039/a902103e - Morigi, G., Pinkse, P. W., Kowalewski, M., & de Vivie-Riedle, R. (2007). Cavity cooling of internal molecular motion. Physical Review Letters, 99(7), 073001.
doi:10.1103/physrevlett.99.073001 - Bartana, A., Kosloff, R., & Tannor, D. J. (1993). Laser cooling of molecular internal degrees of freedom by a series of shaped pulses. The Journal of Chemical Physics, 99(1), 196-210.
doi:10.1063/1.465797 - Baranov, M., Góral, K., Santos, L., & Lewenstein, M. (2002). Ultracold dipolar gases–a challenge for experiments and theory. Physica Scripta, 2002 (T102), 74.
doi:10.1238/physica.topical.102a00074 - Góral, K., Santos, L., & Lewenstein, M. (2002). Quantum phases of dipolar bosons in optical lattices. Physical Review Letters, 88(17), 170406.
doi:10.1103/physrevlett.88.170406 - Barnett, R., Petrov, D., Lukin, M., & Demler, E. (2006). Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Physical Review Letters, 96(19), 190401.
doi:10.1103/physrevlett.96.190401 - Micheli, A., Pupillo, G., Büchler, H. P., & Zoller, P. (2007). Cold polar molecules in two-dimensional traps: Tailoring interactions with external fields for novel quantum phases. Physical Review A – Atomic, Molecular, and Optical Physics, 76(4), 043604.
doi:10.1103/physreva.76.043604 - Gregory, P. D., Aldegunde, J., Hutson, J. M., & Cornish, S. L. (2016). Controlling the rotational and hyperfine state of ultracold Rb87Cs133 molecules. Physical Review A, 94(4), 041403.
doi:10.1103/PhysRevA.94.041403 - Molony, P. K., Gregory, P. D., Ji, Z., Lu, B., Köppinger, M. P., Le Sueur, C. R., Blackley, C. L., Hutson, J. M., & Cornish, S. L. (2014). Creation of ultracold Rb⁸⁷Cs¹³³ molecules in the rovibrational ground state. Physical Review Letters, 113(25), 255301.
doi:10.1103/physrevlett.113.255301 - Park, J. W., Will, S. A., & Zwierlein, M. W. (2015). Ultracold dipolar gas of fermionic Na 23 K 40 molecules in their absolute ground state. Physical Review Letters, 114(20), 205302.
doi:10.1103/PhysRevLett.114.205302 - Guo, M., Zhu, B., Lu, B., Ye, X., Wang, F., Vexiau, R., Bouloufa-Maafa, N., Quéméner, G., Dulieu, O., & Wang, D. (2016). Creation of an ultracold gas of ground-state dipolar Na²³Rb⁸⁷ molecules. Physical Review Letters, 116(20), 205303.
doi:10.1103/physrevlett.116.205303 - Ospelkaus, S., Ni, K. K., Wang, D., de Miranda, M. H. G., Neyenhuis, B., Quéméner, G., Julienne, P. S., Bohn, J. L., Jin, D. S., & Ye, J. (2010). Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science, 327(5967), 853-857.
doi:10.1126/science.1184121 - Thorsheim, H. R., Weiner, J., & Julienne, P. S. (1987). Laser-induced photoassociation of ultracold sodium atoms. Physical Review Letters, 58(23), 2420.
doi:10.1103/physrevlett.58.2420 - Maioli, P., Meunier, T., Gleyzes, S., Auffèves, A., Nogues, G., Brune, M., Raimond, J. M., & Haroche, S. (2005). Nondestructive Rydberg atom counting with mesoscopic fields in a cavity. Physical Review Letters, 94(11), 113601.
doi:10.1103/physrevlett.94.113601 J - Jones, K. M., Tiesinga, E., Lett, P. D., & Julienne, P. S. (2006). Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering. Reviews of Modern Physics, 78(2), 483-535.
doi:10.1103/revmodphys.78.483 - Aikawa, K., Akamatsu, D., Hayashi, M., Oasa, K., Kobayashi, J., Naidon, P., Ueda, M., & Inouye, S. (2010). Coherent transfer of photoassociated molecules into the rovibrational ground state. Physical Review Letters, 105(20), 203001.
doi:10.1103/physrevlett.105.203001 - Patterson, D., & Doyle, J. M. (2007). Bright, guided molecular beam with hydrodynamic enhancement. The Journal of Chemical Physics, 126(15).
doi:10.1063/1.2717178 - Yamakita, Y., Takahashi, R., Ohno, K., Procter, S. R., Maguire, G., & Softley, T. P. (2007). Cooling effects in the Stark deceleration of Rydberg atoms/molecules with time-dependent electric fields. In Journal of Physics: Conference Series (Vol. 80, No. 1, p. 012045). IOP Publishing.
doi:10.1088/1742-6596/80/1/012045 - Bethlem, H. L., Berden, G., & Meijer, G. (1999). Decelerating neutral dipolar molecules. Physical Review Letters, 83(8), 1558.
doi:10.1103/physrevlett.83.1558 - van Veldhoven, J., Bethlem, H. L., & Meijer, G. (2005). AC electric trap for ground-state molecules. Physical Review Letters, 94(8), 083001.
doi:10.1103/physrevlett.94.083001 - Narevicius, E., Libson, A., Parthey, C. G., Chavez, I., Narevicius, J., Even, F. U., & Raizen, M. G. (2008). Stopping supersonic beams with a series of pulsed electromagnetic coils: an atomic coilgun. Physical Review Letters, 100(9), 093003.
doi:10.1103/physrevlett.100.093003 - Sawyer, B. C., Lev, B. L., Hudson, E. R., Stuhl, B. K., Lara, M., Bohn, J. L., & Ye, J. (2007). Magnetoelectrostatic trapping of ground state OH molecules. Physical Review Letters, 98(25), 253002.
doi:10.1103/physrevlett.98.253002 - Vanhaecke, N., Meier, U., Andrist, M., Meier, B. H., & Merkt, F. (2007). Multistage Zeeman deceleration of hydrogen atoms. Physical Review A – Atomic, Molecular, and Optical Physics, 75(3), 031402.
doi:10.1103/physreva.75.031402 - Fulton, R., Bishop, A. I., Shneider, M. N., & Barker, P. F. (2006). Controlling the motion of cold molecules with deep periodic optical potentials. Nature Physics, 2(7), 465-468.
doi:10.1038/nphys339 - DeMille, D. (2002). Quantum computation with trapped polar molecules. Physical Review Letters, 88(6), 067901.
doi:10.1103/physrevlett.88.067901 - DeMille, D., Doyle, J. M., & Sushkov, A. O. (2017). Probing the frontiers of particle physics with tabletop-scale experiments. Science, 357(6355), 990–994.
doi:10.1126/science.aal3003 - Gorshkov, A. V., Manmana, S. R., Chen, G., Demler, E., Lukin, M. D., & Rey, A. M. (2011). Quantum magnetism with polar alkali-metal dimers. Physical Review A, 84(3), 033619.
doi:10.1103/physreva.84.033619 - Hudson, E. R., Lewandowski, H. J., Sawyer, B. C., & Ye, J. (2006). Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Physical Review Letters, 96(14), 143004.
doi:10.1103/physrevlett.96.143004 - Hughes, M., Frye, M. D., Sawant, R., Bhole, G., Jones, J. A., Cornish, S. L., Tarbutt, M. R., Hutson, J. M., Jaksch, D., & Mur-Petit, J. (2020). Robust entangling gate for polar molecules using magnetic and microwave fields. Physical Review A, 101(6), 062308.
doi:10.1103/physreva.101.062308 - Macià, A., Hufnagl, D., Mazzanti, F., Boronat, J., & Zillich, R. E. (2012). Excitations and stripe phase formation in a two-dimensional dipolar Bose gas with tilted polarization. Physical Review Letters, 109(23), 235307.
doi:10.1103/physrevlett.109.235307 - McDonald, M., McGuyer, B. H., Apfelbeck, F., Lee, C.-H., Majewska, I., Moszynski, R., & Zelevinsky, T. (2016). Photodissociation of ultracold diatomic strontium molecules with quantum state control. Nature, 535(7611), 122–126.
doi:10.1038/nature18314 - Yelin, S. F., Kirby, K., & Côté, R. (2006). Schemes for robust quantum computation with polar molecules. Physical Review A, 74(5), 050301.
doi:10.1103/physreva.74.050301 - Sage, J. M., Sainis, S., Bergeman, T., & DeMille, D. (2005). Optical production of ultracold polar molecules. Physical Review Letters, 94(20), 203001.
doi:10.1103/physrevlett.94.203001 - Ni, K. K., Ospelkaus, S., De Miranda, M. H. G., Pe’er, A., Neyenhuis, B., Zirbel, J. J., Kotochigova, S., Julienne, P. S., Bohn, J. L., Jin, D. S., & Ye, J. (2008). A high phase-space-density gas of polar molecules. Science, 322(5899), 231-235.
doi:10.1126/science.1163861 - Banerjee, J., Rahmlow, D., Carollo, R., Bellos, M., Eyler, E. E., Gould, P. L., & Stwalley, W. C. (2012). Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state. Physical Review A – Atomic, Molecular, and Optical Physics, 86(5), 053428.
doi:10.1103/physreva.86.053428 - Deiglmayr, J., Grochola, A., Repp, M., Mörtlbauer, K., Glück, C., Lange, J., Dulieu, O., Wester, R., & Weidemüller, M. (2008). Formation of ultracold polar molecules in the rovibrational ground state. Physical Review Letters, 101(13), 133004.
doi:10.1103/physrevlett.101.133004 - Bruzewicz, C. D., Gustavsson, M., Shimasaki, T., & DeMille, D. (2014). Continuous formation of vibronic ground state RbCs molecules via photoassociation. New Journal of Physics, 16(2), 023018.
doi:10.1088/1367-2630/16/2/023018 - Fioretti, A., & Gabbanini, C. (2013). Experimental study of the formation of ultracold RbCs molecules by short-range photoassociation. Physical Review A – Atomic, Molecular, and Optical Physics, 87(5), 054701.
doi:10.1103/physreva.87.054701 - Kerman, A. J., Sage, J. M., Sainis, S., Bergeman, T., & DeMille, D. (2004). Production of Ultracold, Polar RbCs* Molecules via Photoassociation. Physical review letters, 92(3), 033004.
doi:10.1103/physrevlett.92.153001 - Liu, Y., Gong, T., Ji, Z., Wang, G., Zhao, Y., Xiao, L., & Jia, S. (2019). Production of ultracold 85Rb133Cs molecules in the lowest ground state via the B1Π1 short-range state. The Journal of Chemical Physics, 151(8).
doi:10.1063/1.5108637 - Zabawa, P., Wakim, A., Haruza, M., & Bigelow, N. P. (2011). Formation of ultracold X 1 Σ+(v′′= 0) NaCs molecules via coupled photoassociation channels. Physical Review A – Atomic, Molecular, and Optical Physics, 84(6), 061401.
doi:10.1364/ls.2012.ltu4i.2 - Stwalley, W. C., Banerjee, J., Bellos, M., Carollo, R., Recore, M., & Mastroianni, M. (2009). Resonant coupling in the heteronuclear alkali dimers for direct photoassociative formation of X(0,0) ultracold molecules. The Journal of Physical Chemistry A, 114(1), 81–86.
doi:10.1021/jp901803f - Cournol, A., Pillet, P., Lignier, H., & Comparat, D. (2018). Rovibrational optical pumping of a molecular beam. Physical Review A, 97(3), 031401.
doi:10.1103/physreva.97.031401 - Courageux, T., Cournol, A., Comparat, D., de Lesegno, B. V., & Lignier, H. (2022). Efficient rotational cooling of a cold beam of barium monofluoride. New Journal of Physics, 24(2), 025007.
doi:10.1088/1367-2630/ac511a - Sofikitis, D., Fioretti, A., Weber, S., Viteau, M., Chotia, A., Horchani, R., Akan, D., & Pillet, P. (2009). Broadband vibrational cooling of cold cesium molecules: theory and experiments. Chinese Journal of Chemical Physics, 22(2), 149.
doi:10.1088/1674-0068/22/02/149-156 - Sofikitis, D., Weber, S., Fioretti, A., Horchani, R., Allegrini, M., Chatel, B., & Pillet, P. (2009). Molecular vibrational cooling by optical pumping with shaped femtosecond pulses. New Journal of Physics, 11(5), 055037.
doi:10.1088/1367-2630/11/5/055037 - Fioretti, A., Sofikitis, D., Horchani, R., Li, X., Pichler, M., Weber, S., Horchani, R., & Pillet, P. (2009). Cold cesium molecules: from formation to cooling. Journal of Modern Optics, 56(18-19), 2089-2099.
doi:10.1080/09500340903156822 - Sofikitis, D., Horchani, R., Li, X., Pichler, M., Allegrini, M., Fioretti, A., & Pillet, P. (2009). Vibrational cooling of cesium molecules using noncoherent broadband light. Physical Review A, 80(5), 051401.
doi:10.1103/physreva.80.051401 - Sofikitis, D., Fioretti, A., Weber, S., Horchani, R., Pichler, M., Li, X., & Pillet, P. (2010). Vibrational cooling of cold molecules with optimised shaped pulses. Molecular Physics, 108(6), 795-810.
doi:10.1080/00268971003689899 - Lignier, H., Fioretti, A., Horchani, R., Drag, C., Bouloufa, N., Allegrini, M., Chotia, A., & Comparat, D. (2011). Deeply bound cold caesium molecules formed after resonant coupling. Physical Chemistry Chemical Physics, 13(42), 18910-18920.
doi:10.1039/c1cp21488h - Manai, I., Horchani, R., Lignier, H., Pillet, P., Comparat, D., Fioretti, A., & Allegrini, M. (2012). Rovibrational cooling of molecules by optical pumping. Physical review letters, 109(18), 183001.
doi:10.1103/physrevlett.109.183001 - Manai, I., Horchani, R., Hamamda, M., Fioretti, A., Allegrini, M., Lignier, H., Bouloufa, N., & Comparat, D. (2013). Laser cooling of rotation and vibration by optical pumping. Molecular Physics, 111(12-13), 1844-1854.
doi:10.1080/00268976.2013.813980 - Horchani, R. (2016). Cold molecules: Formation, ro-vibrational cooling and electronic conversion. International Journal of Modern Physics B, 30(14), 1630010.
doi:10.1142/s0217979216300103 - Viteau, M., Chotia, A., Allegrini, M., Bouloufa, N., Dulieu, O., Comparat, D., & Pillet, P. (2008). Optical pumping and vibrational cooling of molecules. Science, 321(5886), 232-234.
doi:10.1126/science.1159496 - Wakim, A., Zabawa, P., Haruza, M., & Bigelow, N. P. (2012). Luminorefrigeration: vibrational cooling of NaCs. Optics Express, 20(14), 16083-16091.
doi:10.1364/oe.20.016083 - Brif, C., Chakrabarti, R., & Rabitz, H. (2010). Control of quantum phenomena: past, present and future. New Journal of Physics, 12(7), 075008.
doi:10.1088/1367-2630/12/7/075008 - Comparat, D. (2014). Molecular cooling via Sisyphus processes. Physical Review A, 89(4), 043410.
doi:10.1103/physreva.89.043410 - Travers, J. C. (2010). Blue extension of optical fibre supercontinuum generation. Journal of Optics, 12(11), 113001.
doi:10.1088/2040-8978/12/11/113001
-
Теоретично досліджене коливне охолодження молекул RbCs, утворених внаслідок фотоасоціації атомів Rb та Cs. Холодні молекули, спочатку розподілені по кількох коливних рівнях, можуть бути переведеними на певний коливний рівень синглетного основного електронного стану X1∑+. Це досягається шляхом багаторазового оптичного нагнітання лазерним випромінюванням зі спектром, достатньо широким для збудження всіх заселених коливних рівнів крім цільового. Як свідчать отримані результати, ефективність цього методу охолодження може наближатися до 100%.
оптичне нагнітання, коливне охолодження, молекули
Ключові слова: оптичне нагнітання, коливне охолодження, молекули
This work is licensed under CC BY 4.0