Ukrainian Journal of Physical Optics


2026 Volume 27, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

QUIESCENT SOLITONS IN MAGNETO-OPTIC WAVEGUIDES HAVING KUDRYASHOV'S FIRST FORM OF NONLINEAR SELF-PHASE MODULATION STRUCTURE

E.M.E. Zayed, B.M.M. Saad, A.H. Arnous, Y. Yildirim, A. Biswas, L. Moraru and C.M.B. Dragomir


ABSTRACT

This paper reports the observation of quiescent optical solitons in magneto–optic waveguides. The self–phase modulation structure is based on the one proposed by Kudryashov. Three algorithms have enabled this retrieval: the enhanced direct algebraic method, the extended auxiliary equation approach, and the new mapping scheme. Together, these methods have recovered a full spectrum of quiescent optical solitons. The parameter constraints for their existence are also included. A few numerical simulations demonstrate the analytical results

Keywords: solitons, magneto-optics, auxiliary algorithm, mapping scheme; algebraic approach

UDC: 535.8; 535.14; 537.86

    1. Kudryashov, N. A. (2022). Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Applied Mathematics Letters, 128, 107888.
      doi:10.1016/j.aml.2021.107888
    2. Elsherbeny, A. M., Arnous, A. H., Biswas, A., Yildirim, Y., Jawad, A. J. M., & Alshomrani, A. S. (2024). Quiescent optical solitons for Fokas-Lenells equation with nonlinear chromatic dispersion and a couple of self-phase modulation structures. The European Physical Journal Plus, 139, Article-483.
      doi:10.1140/epjp/s13360-024-05252-6
    3. Arnous, A. H., Biswas, A., Yildirim, Y., & Asiri, A. (2023). Quiescent optical solitons for the concatenation model having nonlinear chromatic dispersion with differential group delay. Contemporary Mathematics, Volume, 877-904.
      doi:10.37256/cm.4420233596
    4. Arnous, A. H., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., & Alghamdi, A. A. (2023). Quiescent optical solitons with Kudryashov's law of nonlinear refractive index. Results in Physics, 47, 106394.
      doi:10.1016/j.rinp.2023.106394
    5. Arnous, A. H., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., & Moshokoa, S. P. (2022). Quiescent optical Solitons with cubic-quartic and generalized cubic-quartic nonlinearity. Electronics, 11(21), 3653.
      doi:10.3390/electronics11223653
    6. Arnous, A. H., Nofal, T. A., Biswas, A., Khan, S., & Moraru, L. (2022). Quiescent optical solitons with Kudryashov's generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion. Universe, 8(10), Article-501.
      doi:10.3390/universe8100501
    7. Ekici, M., Sonmezoglu, A., Biswas, A., & Belic, M. (2018). Sequel to stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. Optik, 172, 636-650.
      doi:10.1016/j.ijleo.2018.07.068
    8. Biswas, A., Ekici, M., Sonmezoglu, A., & Belic, M. (2018). Stationary optical solitons with nonlinear group velocity dispersion by extended trial function scheme. Optik, 171, 529-542.
      doi:10.1016/j.ijleo.2018.06.067
    9. Biswas, A., & Khalique, C. M. (2011). Stationary solutions for nonlinear dispersive Schrödinger's equation. Nonlinear Dynamics, 63, 623-626.
      doi:10.1007/s11071-010-9824-1
    10. Arnous, A. H. (2025). Lie symmetries, stability, and chaotic dynamics of solitons in nematic liquid crystals with stochastic perturbation. Chaos, Solitons & Fractals, 199, 116730.
      doi:10.1016/j.chaos.2025.116730
    11. Adem, A. R., Biswas, A., & Yildirim, Y. (2025). Implicit quiescent optical soliton perturbation with nonlinear chromatic dispersion and generalized temporal evolution having a plethora of self-phase modulation structures by Lie symmetry. Semiconductor Physics, Quantum Electronics & Optoelectronics, 28(3), 335-345.
      doi:10.15407/spqeo28.03.335
    12. Zayed, E. M. E., El-Shater, M., Arnous, A. H., Yıldırım, Y., Hussein, L., Jawad, A. J. M., Veni, S. S., & Biswas, A. (2024). Quiescent optical solitons with Kudryashov's generalized quintuple-power law and nonlocal nonlinearity having nonlinear chromatic dispersion with generalized temporal evolution by enhanced direct algebraic method and sub-ODE approach. European Physical Journal Plus, 139, 885.
      doi:10.1140/epjp/s13360-024-05636-8
    13. Adem, A. R., Yildirim, Y., Moraru, L., González-Gaxiola, O., & Biswas, A. (2025). Implicit quiescent optical soliton perturbation having nonlinear chromatic dispersion and generalized temporal evolution with Kudryashov's forms of self-phase modulation structure by Lie symmetry. Afrika Matematika, 36, 173.
      doi:10.1007/s13370-025-01388-5
    14. Arnous, A. H., Hashemi, M. S., Nisar, K. S., Shakeel, M., Ahmad, J., Ahmad, I., Jan, R., Ali, A., Kapoor, M., et al. (2024). Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics. Results in Physics, 57, 107369.
      doi:10.1016/j.rinp.2024.107369
    15. Arnous, A. H., Ahmed, M. S., Nofal, T. A., & Yildirim, Y. (2024). Exploring the impact of multiplicative white noise on novel soliton solutions with the perturbed Triki-Biswas equation. The European Physical Journal Plus, 139, Artile-650.
      doi:10.1140/epjp/s13360-024-05442-2
    16. Zeng, X., & Yong, X. (2008). A new mapping method and its applications to nonlinear partial differential equations. Physics Letters A, 372(41), 6602-6607.
      doi:10.1016/j.physleta.2008.09.025
    17. Xu, G. Q. (2014). Extended auxiliary equation method and its applications to three generalized NLS equations. Abstract and Applied Analysis, 2014, 1-7.
      doi:10.1155/2014/541370
    18. Zayed, E. M. E., & Alurrfi, K. A. E. (2016). Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Applied Mathematics and Computation, 289, 111-131.
      doi:10.1016/j.amc.2016.04.014
    19. Geng, Y., & Li, J. (2008). Exact solutions to a nonlinearly dispersive Schrödinger equation. Applied Mathematics and Computation, 195(2), 420-439.
      doi:10.1016/j.amc.2007.04.119
    20. Yan, Z. (2006). Envelope compact and solitary pattern structures for the equations. Physics Letters A, 357(3-4), 196-203.
      doi:10.1016/j.physleta.2006.04.032
    21. Yan, Y. (2007). New exact solution structures and nonlinear dispersion in the coupled nonlinear wave systems. Physics Letters A, 361(1-2), 194-200.
      doi:10.1016/j.physleta.2006.07.032
    22. Zhang, Z., Liu, Z., Miao, X., & Chen, Y. (2011). Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity. Physics Letters A, 375(10), 1275-1280.
      doi:10.1016/j.physleta.2010.11.070
    23. Zhang, Z., Li, Y., Liu, Z., & Miao, M. (2011). New exact solutions to the perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity via modified trigonometric function series method. Communications in Nonlinear Science and Numerical Simulation, 16(8), 3097-3106.
      doi:10.1016/j.cnsns.2010.12.010
    24. Sirendaoreji. (2007). Auxiliary equation method and new solutions of Klein-Gordon equations. Chaos, Solitons & Fractals, 31(4), 943-950.
      doi:10.1016/j.chaos.2005.10.048
    25. Ekici, M., & Sarmasik, C. A. (2024). Certain analytical solutions of the concatenation model with a multiplicative white noise in optical fibers. Nonlinear Dynamics, 112, 9459-9476.
      doi:10.1007/s11071-024-09478-y
    26. Jawad, A. J. M., & Abu-AlShaeer, M. J. (2023). Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Al-Rafidain Journal of Engineering Sciences, 1(1), 1-8.
      doi:10.61268/sapgh524
    27. Jihad, N., & Almuhsan, M. A. A. (2023). Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Al-Rafidain Journal of Engineering Sciences, 1(1), 81-92.
      doi:10.61268/0dat0751
    28. Ozkan, Y. S., & Yassar, E. (2024). Three efficient schemes and highly dispersive optical solitons of perturbed Fokas-Lenells equation in stochastic form. Ukrainian Journal of Physical Optics, 25(5), S1017-S1038.
      doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.S1017
    29. Li, N., Chen, Q., Triki, H., Liu, F., Sun, Y., Xu, S., & Zhou, Q. (2024). Bright and dark solitons in a (2+1)-dimensional spin-1 Bose-Einstein condensates. Ukrainian Journal of Physical Optics, 25(5), S1060-S1074.
      doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.S1060

    Ця стаття описує отримання спокійних оптичних солітонів у магнітооптичних хвилеводах. Структури само фазової модуляції, що використовуються, були запропоновані Кудряшовим. Три алгоритми інтегрування зробили можливим отримання цих розв’язків. Вдосконалений прямий алгебраїчний метод, розширений підхід до допоміжних рівнянь та нова схема відображення разом дозволили відновити повний спектр спокійних оптичних солітонів. Також наведені параметричні обмеження для існування таких солітонів. Декілька чисельних симуляцій ілюструють аналітичний результат. Ключові слова: солітони, магнітооптика, допоміжний алгоритм, схема відображення; алгебраїчний підхід

    Ключові слова: солітони, магнітооптика, допоміжний алгоритм, схема відображення; алгебраїчний підхід


This work is licensed under CC BY 4.0