Ukrainian Journal of Physical Optics
2026 Volume 27, Issue 1
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
OPTICAL VORTEX GENERATION USING A GLASS PLATE BENT BY A LOAD DISTRIBUTED OVER A FINITE DISTANCE
O. Krupych, D. Adamenko, T. Dudok, I. Skab and R. Vlokh
Ukr. J. Phys. Opt.
Vol. 27
,
Issue 1 , pp. 01102 - 01109 (2026).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2026.01102
ABSTRACT
It has been experimentally demonstrated that an optical vortex produced using the bending of the glass plate with the aid of a load distributed over a finite distance of the upper surface of an optical glass plate is nearly canonical. It has been found that the generated dislocation of the phase front deviates from a pure screw dislocation toward a mixed screw-edge dislocation by no more than ~10%.
Keywords:
optical vortex, flint glass, bending stress
UDC:
535.55
- Suciu, Ş., Bulzan, G. A., Isdrailă, T. A., Pălici, A. M., Ataman, S., Kusko, C., & Ionicioiu, R. (2023). Quantum communication networks with optical vortices. Physical Review A, 108(5), 052612.
doi:10.1103/PhysRevA.108.052612 - Hua, C., Halász, G. B., Dumitrescu, E., Brahlek, M., & Lawrie, B. (2021). Optical vortex manipulation for topological quantum computation. Physical Review B, 104(10), 104501.
doi:10.1103/PhysRevB.104.104501 - Edrei, E., & Scarcelli, G. (2020). Optical focusing beyond the diffraction limit via vortex-assisted transient microlenses. ACS Photonics, 7(4), 914-918.
doi:10.1021/acsphotonics.0c00109 - Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M., & Woerdman, J. P. (1994). Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 112(5-6), 321-327.
doi:10.1016/0030-4018(94)90638-6 - Carpentier, A. V., Michinel, H., Salgueiro, J. R., & Olivieri, D. (2008). Making optical vortices with computer-generated holograms. American Journal of Physics, 76(10), 916-921.
doi:10.1119/1.2955792 - Volyar, A., Shvedov, V., Fadeyeva, T., Desyatnikov, A. S., Neshev, D. N., Krolikowski, W., & Kivshar, Y. S. (2006). Generation of single-charge optical vortices with an uniaxial crystal. Optics Express, 14(9), 3724-3729.
doi:10.1364/OE.14.003724 - Brasselet, E., Izdebskaya, Y., Shvedov, V., Desyatnikov, A. S., Krolikowski, W., & Kivshar, Y. S. (2009). Dynamics of optical spin-orbit coupling in uniaxial crystals. Optics Letters, 34(7), 1021-1023.
doi:10.1364/OL.34.001021 - Fadeyeva, T. A., Shvedov, V. G., Izdebskaya, Y. V., Volyar, A. V., Brasselet, E., Neshev, D. N., Desyatnikov, A.S., Krolikowski, W. & Kivshar, Y. S. (2010). Spatially engineered polarization states and optical vortices in uniaxial crystals. Optics Express, 18(10), 10848-10863.
doi:10.1364/OE.18.010848 - Marrucci, L., Manzo, C., & Paparo, D. (2006). Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 96(16), 163905.
doi:10.1103/PhysRevLett.96.163905 - Ostrovsky, A. S., Rickenstorff-Parrao, C., & Arrizón, V. (2013). Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. Optics Letters, 38(4), 534-536.
doi:10.1364/OL.38.000534 - Ahmed, H., Kim, H., Zhang, Y., Intaravanne, Y., Jang, J., Rho, J., Chen, S. & Chen, X. (2022). Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 11(5), 941-956.
doi:10.1515/nanoph-2021-0746 - Du, J., & Wang, J. (2018). Dielectric metasurfaces enabling twisted light generation/detection/(de) multiplexing for data information transfer. Optics Express, 26(10), 13183-13194.
doi:10.1364/OE.26.013183 - Yan, X., Tao, X., Guo, M., Zhou, C., Chen, J., Shang, G., & Li, P. (2025, October). Vector Vortex Beams: Theory, Generation, and Detection of Laguerre-Gaussian and Bessel-Gaussian Types. In Photonics (Vol. 12, No. 10, p. 1029). MDPI.
doi:10.3390/photonics12101029 - Skab, I., Vasylkiv, Y., Smaga, I., & Vlokh, R. (2011). Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Physical Review A - Atomic, Molecular, and Optical Physics, 84(4), 043815.
doi:10.1103/PhysRevA.84.043815 - Vasylkiv, Y., Skab, I., & Vlokh, R. (2014). Generation of double-charged optical vortices on the basis of electro-optic Kerr effect. Applied Optics, 53(10), B60-B73.
doi:10.1364/AO.53.000B60 - Skab, I., Vasylkiv, Y., Savaryn, V., & Vlokh, R. (2011). Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. Journal of the Optical Society of America A, 28(4), 633-640.
doi:10.1364/JOSAA.28.000633 - Skab, I., Vasylkiv, Y., Zapeka, B., Savaryn, V., & Vlokh, R. (2011). Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. Journal of the Optical Society of America A, 28(7), 1331-1340.
doi:10.1364/JOSAA.28.001331 - Skab, I., Vasylkiv, Y., & Vlokh, R. (2012). Induction of optical vortex in the crystals subjected to bending stresses. Applied Optics, 51(24), 5797-5805.
doi:10.1364/AO.51.005797 - Vasylkiv, Y., Skab, I., & Vlokh, R. (2013). Efficiency of electrooptic spin-to-orbital angular momentum conversion in crystals. Optical Materials, 35(12), 2496-2501.
doi:10.1016/j.optmat.2013.07.006 - Vasylkiv, Y., Skab, I., & Vlokh, R. (2013). Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses. Ukrainian Journal of Physical Optics, (14,№ 1), 50-56.
doi:10.3116/16091833/14/1/50/2013 - Colourless optical glass. Physical and chemical properties. Basic parameters. State Standard 13659-78.
- Timoshenko, S. P. (1958). Strength of Materials: Part 1-Elementary. Van Nostrand Reinhold Company.
- Timoshenko, S. P. (1940). Strength of Materials: Part II: Advanced Theory and Problems. Van Nostrand Reinhold Company.
- Krupych, O., Dudok, T., Skab, I., Nastishin, Y., Hrabchak, Z., Chernenko, A., Buluy, O., Zelenov, P., Nazarenko, V., Kurochkin, O. & Vlokh, R. (2025). Electric field controlled switching of an optical vortex charge with a liquid crystal cell. Optics Communications, 579, 131593.
doi:10.1016/j.optcom.2025.131593 - Waxler, R. M., Horowitz, D., & Feldman, A. (1979). Optical and physical parameters of Plexiglas 55 and Lexan. Applied Optics, 18(1), 101-104.
doi:10.1364/AO.18.000101 - Vasylkiv, Y., Smaga, I., Skab, I., & Vlokh, R. (2013). Efficient materials for spin-to-orbit angular momentum conversion using bending technique. Ukrainian Journal of Physical Optics, 14(4), 200-209.
doi:10.3116/16091833/14/4/200/2013
-
У цій роботі експериментально показано, що оптичний вихор, утворений за допомогою згинання скляної пластини при навантаженні, розподіленому вздовж скінченної відстані на верхній поверхні оптичної скляної пластини, є майже канонічним. Ввиявлено, що утворена дислокація фазового фронту відхиляється від чистої гвинтової дислокації у бік змішаної гвинтово-крайової дислокації не більше ніж на ~10%.
Ключові слова: оптичний вихор, оптичне скло Ф1, напруження згину
This work is licensed under CC BY 4.0