Ukrainian Journal of Physical Optics


2026 Volume 27, Issue 1


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

OPTICAL VORTEX GENERATION USING A GLASS PLATE BENT BY A LOAD DISTRIBUTED OVER A FINITE DISTANCE

O. Krupych, D. Adamenko, T. Dudok, I. Skab and R. Vlokh


ABSTRACT

It has been experimentally demonstrated that an optical vortex produced using the bending of the glass plate with the aid of a load distributed over a finite distance of the upper surface of an optical glass plate is nearly canonical. It has been found that the generated dislocation of the phase front deviates from a pure screw dislocation toward a mixed screw-edge dislocation by no more than ~10%.

Keywords: optical vortex, flint glass, bending stress

UDC: 535.55

    1. Suciu, Ş., Bulzan, G. A., Isdrailă, T. A., Pălici, A. M., Ataman, S., Kusko, C., & Ionicioiu, R. (2023). Quantum communication networks with optical vortices. Physical Review A, 108(5), 052612.
      doi:10.1103/PhysRevA.108.052612
    2. Hua, C., Halász, G. B., Dumitrescu, E., Brahlek, M., & Lawrie, B. (2021). Optical vortex manipulation for topological quantum computation. Physical Review B, 104(10), 104501.
      doi:10.1103/PhysRevB.104.104501
    3. Edrei, E., & Scarcelli, G. (2020). Optical focusing beyond the diffraction limit via vortex-assisted transient microlenses. ACS Photonics, 7(4), 914-918.
      doi:10.1021/acsphotonics.0c00109
    4. Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M., & Woerdman, J. P. (1994). Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 112(5-6), 321-327.
      doi:10.1016/0030-4018(94)90638-6
    5. Carpentier, A. V., Michinel, H., Salgueiro, J. R., & Olivieri, D. (2008). Making optical vortices with computer-generated holograms. American Journal of Physics, 76(10), 916-921.
      doi:10.1119/1.2955792
    6. Volyar, A., Shvedov, V., Fadeyeva, T., Desyatnikov, A. S., Neshev, D. N., Krolikowski, W., & Kivshar, Y. S. (2006). Generation of single-charge optical vortices with an uniaxial crystal. Optics Express, 14(9), 3724-3729.
      doi:10.1364/OE.14.003724
    7. Brasselet, E., Izdebskaya, Y., Shvedov, V., Desyatnikov, A. S., Krolikowski, W., & Kivshar, Y. S. (2009). Dynamics of optical spin-orbit coupling in uniaxial crystals. Optics Letters, 34(7), 1021-1023.
      doi:10.1364/OL.34.001021
    8. Fadeyeva, T. A., Shvedov, V. G., Izdebskaya, Y. V., Volyar, A. V., Brasselet, E., Neshev, D. N., Desyatnikov, A.S., Krolikowski, W. & Kivshar, Y. S. (2010). Spatially engineered polarization states and optical vortices in uniaxial crystals. Optics Express, 18(10), 10848-10863.
      doi:10.1364/OE.18.010848
    9. Marrucci, L., Manzo, C., & Paparo, D. (2006). Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 96(16), 163905.
      doi:10.1103/PhysRevLett.96.163905
    10. Ostrovsky, A. S., Rickenstorff-Parrao, C., & Arrizón, V. (2013). Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. Optics Letters, 38(4), 534-536.
      doi:10.1364/OL.38.000534
    11. Ahmed, H., Kim, H., Zhang, Y., Intaravanne, Y., Jang, J., Rho, J., Chen, S. & Chen, X. (2022). Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 11(5), 941-956.
      doi:10.1515/nanoph-2021-0746
    12. Du, J., & Wang, J. (2018). Dielectric metasurfaces enabling twisted light generation/detection/(de) multiplexing for data information transfer. Optics Express, 26(10), 13183-13194.
      doi:10.1364/OE.26.013183
    13. Yan, X., Tao, X., Guo, M., Zhou, C., Chen, J., Shang, G., & Li, P. (2025, October). Vector Vortex Beams: Theory, Generation, and Detection of Laguerre-Gaussian and Bessel-Gaussian Types. In Photonics (Vol. 12, No. 10, p. 1029). MDPI.
      doi:10.3390/photonics12101029
    14. Skab, I., Vasylkiv, Y., Smaga, I., & Vlokh, R. (2011). Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Physical Review A - Atomic, Molecular, and Optical Physics, 84(4), 043815.
      doi:10.1103/PhysRevA.84.043815
    15. Vasylkiv, Y., Skab, I., & Vlokh, R. (2014). Generation of double-charged optical vortices on the basis of electro-optic Kerr effect. Applied Optics, 53(10), B60-B73.
      doi:10.1364/AO.53.000B60
    16. Skab, I., Vasylkiv, Y., Savaryn, V., & Vlokh, R. (2011). Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. Journal of the Optical Society of America A, 28(4), 633-640.
      doi:10.1364/JOSAA.28.000633
    17. Skab, I., Vasylkiv, Y., Zapeka, B., Savaryn, V., & Vlokh, R. (2011). Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. Journal of the Optical Society of America A, 28(7), 1331-1340.
      doi:10.1364/JOSAA.28.001331
    18. Skab, I., Vasylkiv, Y., & Vlokh, R. (2012). Induction of optical vortex in the crystals subjected to bending stresses. Applied Optics, 51(24), 5797-5805.
      doi:10.1364/AO.51.005797
    19. Vasylkiv, Y., Skab, I., & Vlokh, R. (2013). Efficiency of electrooptic spin-to-orbital angular momentum conversion in crystals. Optical Materials, 35(12), 2496-2501.
      doi:10.1016/j.optmat.2013.07.006
    20. Vasylkiv, Y., Skab, I., & Vlokh, R. (2013). Efficiency of spin-to-orbit conversion in crystals subjected to torsion stresses. Ukrainian Journal of Physical Optics, (14,№ 1), 50-56.
      doi:10.3116/16091833/14/1/50/2013
    21. Colourless optical glass. Physical and chemical properties. Basic parameters. State Standard 13659-78.
    22. Timoshenko, S. P. (1958). Strength of Materials: Part 1-Elementary. Van Nostrand Reinhold Company.
    23. Timoshenko, S. P. (1940). Strength of Materials: Part II: Advanced Theory and Problems. Van Nostrand Reinhold Company.
    24. Krupych, O., Dudok, T., Skab, I., Nastishin, Y., Hrabchak, Z., Chernenko, A., Buluy, O., Zelenov, P., Nazarenko, V., Kurochkin, O. & Vlokh, R. (2025). Electric field controlled switching of an optical vortex charge with a liquid crystal cell. Optics Communications, 579, 131593.
      doi:10.1016/j.optcom.2025.131593
    25. Waxler, R. M., Horowitz, D., & Feldman, A. (1979). Optical and physical parameters of Plexiglas 55 and Lexan. Applied Optics, 18(1), 101-104.
      doi:10.1364/AO.18.000101
    26. Vasylkiv, Y., Smaga, I., Skab, I., & Vlokh, R. (2013). Efficient materials for spin-to-orbit angular momentum conversion using bending technique. Ukrainian Journal of Physical Optics, 14(4), 200-209.
      doi:10.3116/16091833/14/4/200/2013

    У цій роботі експериментально показано, що оптичний вихор, утворений за допомогою згинання скляної пластини при навантаженні, розподіленому вздовж скінченної відстані на верхній поверхні оптичної скляної пластини, є майже канонічним. Ввиявлено, що утворена дислокація фазового фронту відхиляється від чистої гвинтової дислокації у бік змішаної гвинтово-крайової дислокації не більше ніж на ~10%.

    Ключові слова: оптичний вихор, оптичне скло Ф1, напруження згину


This work is licensed under CC BY 4.0