Ukrainian Journal of Physical Optics


2026 Volume 27, Issue 1


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

JUDD-OFELT ANALYSIS AND CONCENTRATION-DEPENDENT LUMINESCENCE QUENCHING BEHAVIOR OF Dy3+-DOPED NaYGeO4 PHOSPHORS PREPARED BY SOLID-STATE REACTION

Shengyi Liu, Duan Gao, Jiade Dong, Han Yin, Haoyu Liu, Li Wang and Wenbin Song


ABSTRACT

In this study, a series of NaYGeO4 (NYG): Dy3+ phosphors with varying Dy3+ doping concentrations were successfully synthesized via a conventional high-temperature solid-state reaction method. X-ray diffraction analysis confirmed that all samples exhibited a pure NYG phase with no detectable secondary phases. To systematically investigate the concentration quenching behavior and thermal stability of luminescence, the photoluminescence properties of the samples were comprehensively characterized. In addition, diffuse reflectance spectra, fluorescence decay measurements, and Judd-Ofelt theory were employed to gain deeper insight into the optical transition characteristics of Dy3+ ions. The results indicate that the internal quantum efficiency of the Dy3+ 4F9/2 level gradually decreases with increasing dopant concentration.

Keywords: luminescence, Judd-Ofelt theory, NaYGeO4, phosphors

UDC: 535.37

    1. He, E., Chen, X., Wu, Y., Cui, Y., Wang, T., Li, F., Han, Q., Zuo, X., & Liu, N. (2025). Efficient deep-red-emitting CaMg2La2W2O12: Mn4+, Nd3+ phosphor toward indoor plant cultivation LED lighting. Journal of Luminescence, 121578.
      doi:10.1016/j.jlumin.2025.121578
    2. Mao, Y., Zhao, X., Shi, S., & Fu, L. (2025). Structure and optical properties of Mn4+-doped Li6CaLa2Ta2O12 phosphor for temperature sensing and latent fingerprint detection. Journal of Molecular Structure, 143345.
      doi:10.1016/j.molstruc.2025.143345
    3. Peng, C., Tang, B., Wei, M., Zhang, X., Molokeev, M. S., Zhang, H., & Lei, B. (2025). Constructing Efficient and Thermally-stable Far Red Emitting Phosphor with Excellent Response to Phytochrome Pfr for Indoor Agriculture. Journal of Alloys and Compounds, 183960.
      doi:10.1016/j.jallcom.2025.183960
    4. Sonkusare, K., Tikale, R., Taikar, D. R., & Dhoble, S. J. (2025). Color tunable luminescence and energy transfer behavior of Dy3+, Eu3+ co-doped Na2MgPO4F phosphor for light emitting devices. Journal of Molecular Structure, 144122.
      doi:10.1016/j.molstruc.2025.144122
    5. Yuan, C., Peng, X., Li, R., Zhang, Y., Deng, C., & Cui, R. (2025). A novel thermally-stable red phosphor Ba6La2Ga4O15: Eu3+ for WLEDs, anti-counterfeit inks, and fingerprint analysis. Journal of Photochemistry and Photobiology A: Chemistry, 116804.
      doi:10.1016/j.jphotochem.2025.116804
    6. Niu, Y., Wu, F., Zhuo, Y., Li, J., Zhang, Q., Teng, Y., Xie, X., Dong, H. & Mu, Z. (2025). Photochromic and long persistent luminescence properties of Bi3+ doped SrGa4O7. Journal of Photochemistry and Photobiology A: Chemistry, 116800.
      doi:10.2139/ssrn.5281291
    7. Wang, Y., Li, Z., Xue, M., Lai, Z., & Cao, W. (2026). Recent progress in Eu2+ activated red phosphors for white LEDs and laser displays: focusing on efficient host screening and innovative structural design. Coordination Chemistry Reviews, 546, 217060.
      doi:10.1016/j.ccr.2025.217060
    8. Liu, F., Zhao, J., Tu, R., Fu, Y., Wang, Y., Lu, J., & Leng, Z. (2025). Energy Transfer Engineering in Matrix-Sensitized NaBa10Y5W4O30: Sm3+ Orange-Red Phosphors for Solid-State Lighting. Journal of Solid State Chemistry, 125681.
      doi:10.1016/j.jssc.2025.125681
    9. Yang, R., Song, K., Zheng, Y., Zhan, C., Wang, Y., Lin, C., Zhou, T., Zhuang, Y. & Xie, R. J. (2025). Wide-Range Tuning of Trap Depths in Double Perovskite Phosphors Enabling Tunable NIR Persistent Luminescence. Advanced Powder Materials, 100343.
      doi:10.1016/j.apmate.2025.100343
    10. Du, Y., Jabeen, S., Zhao, H., Zhang, Y., Yang, Y., Yang, Y., Xie, M., Yu, R. & Yu, R. (2025). Oleic acid passivation engineering enables humidity-stable SrLaZnO3.5: Sm3+ red phosphors for high-performance white LEDs and fingerprint visualization with level III details. Applied Materials Today, 47, 102931.
      doi:10.1016/j.apmt.2025.102931
    11. Zhang, J., Liu, B., Dai, Y., & Han, B. (2020). Synthesis and luminescence properties of novel host-sensitized germanate phosphors NaYGeO4: Ln (Ln= Eu3+, Sm3+, Dy3+). Optik, 203, 163944.
      doi:10.1016/j.ijleo.2019.163944
    12. Wang, E., Feng, K., Li, J., Zhou, X., & Sun, X. (2022). Luminescence characteristics of NaYGeO4: Bi3+/Tb3+/Eu3+ phosphors. Journal of Luminescence, 250, 119108.
      doi:10.1016/j.jlumin.2022.119108
    13. Zhao, W., Feng, X., & Fan, B. (2020). Novel color tunable phosphors NaYGeO4: Tm3+, Tb3+, Eu3+ for ultraviolet excited white LEDs with good thermal stability. Journal of Materials Science: Materials in Electronics, 31(17), 14434-14442.
      doi:10.1007/s10854-020-04003-4
    14. Ansari, E., Patle, S. K., Ugemuge, N. S., Kadam, A. R., & Dhoble, S. J. (2025). Structural and spectroscopic analysis of GdSr3(PO4)3: Dy3+ phosphors for white LED applications. Journal of Molecular Structure, 143856.
      doi:10.1016/j.molstruc.2025.143856
    15. Wang, N., Li, Y., Yang, L., Zhang, Y., Guo, H., Cui, R., Zhang, J. & Deng, C. (2025). Achieving spectrally tunable properties in Ca9ZnLi(PO4)7 by utilizing energy transfer between Eu2+ and Dy3+ ions. Journal of Alloys and Compounds, 183449.
      doi:10.1016/j.jallcom.2025.183449
    16. Kang, S. H., Kim, S. J. (2025). Enhanced photocatalytic reaction of (TiO₂-WO₃) on Sr₄Al₁₄O₂₅:Eu,Dy long-lasting phosphor. J. Mater. Sci.: Mater. Electron. 36(26), 1726-1737.
      doi:10.1007/s10854-025-15807-7
    17. Zhuang, P., Liu, W., Cao, H., Lin, Y., Guo, Y., Zhang, J., & Zhang, Y. (2025). Tunable warm white emission in Eu3+/Dy3+ co-doped K2Y(WO4)(PO4) phosphors for solid-state lighting. Ceramics International.
      doi:10.1016/j.ceramint.2025.06.200
    18. Xia, Z., Li, R., Liu, F., Zhou, W., Zhao, W., Meng, W., Song, M. & Xue, J. (2025). Dual-luminescent Sc2(MoO4)3: Dy3+/Eu3+ phosphor system: energy transfer dynamics and high-sensitivity temperature sensing. RSC advances, 15(35), 28994-29002.
      doi:10.1039/D5RA04860E
    19. Zhang, Y., Chen, B., Xu, S., Li, X., Zhang, J., Sun, J., Zhang, X., Xia, H. & Hua, R. (2019). Reply to the 'Comment on "A universal approach for calculating the Judd-Ofelt parameters of RE3+ in powdered phosphors and its application for the β-NaYF4: Er3+/Yb3+ phosphor derived from auto-combustion-assisted fluoridation"'by D. Zhang, Q. Xu and Y. Zhang, Phys. Chem. Chem. Phys., 2019, 21. Physical Chemistry Chemical Physics, 21(20), 10840-10845.
      doi:10.1039/C9CP01629E
    20. Tang, H., Qin, Y., Zhao, X., Liu, L., Huang, Z., Quan, J., Tang, Y. & Zhu, J. (2024). Highly thermostable and color tunable Dy3+/Sm3+ co-doped germanate phosphors for solid-state lighting. Journal of Alloys and Compounds, 1005, 176237.
      doi:10.1016/j.jallcom.2024.176237
    21. Jose, J. R., Jose, T. A., Ashok, A. J., Joseph, C., & Biju, P. R. (2024). Cool white light emitting Dy3+ activated KNaCa2(PO4)2 phosphor for outdoor lighting and optical thermometric applications. Journal of Alloys and Compounds, 1006, 176304.
      doi:10.1016/j.jallcom.2024.176304
    22. Hua, Y., Ran, W., & Yu, J. S. (2021). Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications. Chemical Engineering Journal, 406, 127154.
      doi:10.1016/j.cej.2020.127154
    23. Tamilmani, V., Mondal, M., Rai, V. K., & Mishra, A. K. (2021). Tunable luminescence from yttrium oxide flowers using asparagine as shape modifier. Journal of Alloys and Compounds, 857, 157575.
      doi:10.1016/j.jallcom.2020.157575
    24. Kaewnuam, E., Chanthima, N., Jayasankar, C. K., Kim, H. J., & Kaewkhao, J. (2016). Optical, luminescence and judd-oflet study of Eu3+ doped lithium yttrium borate glasses for using as laser gain medium. Key Engineering Materials, 675, 364-367.
      doi:10.4028/www.scientific.net/KEM.675-676.364
    25. Verma, R. S., Gupta, R., & Joshi, G. K. (2002). Calculation of Judd-Ofelt intensity parameters. Journal of the Indian Chemical Society, 79(10), 802-806.

    У цьому дослідженні серію люмінофорів NaYGeO4 (NYG): Dy3++ з різною концентрацією легувальної домішки Dy3++ було успішно синтезовано за допомогою звичайного методу високотемпературної твердофазної реакції. Рентгенівський дифракційний аналіз підтвердив, що всі зразки демонстрували чисту фазу NYG без виявлених вторинних фаз. Для систематичного дослідження поведінки концентраційного гасіння та термічної стабільності люмінесценції було всебічно схарактеризувано властивості фотолюмінесценції зразків. Крім того, для глибшого розуміння характеристик оптичних переходів іонів Dy3++ були використані спектри дифузного відбиття, вимірювання флуоресцентного спаду та теорію Джадда-Офельта. Результати показують, що внутрішня квантова ефективність рівня Dy3+ 4F9/2 поступово зменшується зі збільшенням концентрації легувальної домішки.

    Ключові слова: люмінесценція, теорія Джадда-Офельта, NaYGeO4, люмінофори


This work is licensed under CC BY 4.0