Ukrainian Journal of Physical Optics
2026 Volume 27, Issue 1
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
PHOTOCHROMISM OF DOPED Bi12SiO20 CRYSTALS
Т. V. Panchenko, M. P. Trubitsyn and V. Laguta
Author Information
1 *Т. V. Panchenko
,
1,2M. P. Trubitsyn
,
2,3V. Laguta
1Research Institute for Energy Efficient Technologies and Materials Sciences, Oles Honchar Dnipro National University, Science Ave., 72, Dnipro, 49010, Ukraine
2Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague 8, Czech Republic
3Frantsevich Institute for Problems of Materials Science, NAS Ukraine, Omelyan Pritsak str. 3, Kyiv, 03142, Ukraine
*Corresponding author: panchtv141@gmail.com
Ukr. J. Phys. Opt.
Vol. 27
,
Issue 1 , pp. 01001 - 01015 (2026).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2026.01001
ABSTRACT
In the spectral range of 0.5–3.5 eV, both stationary and photoinduced optical absorption, as well as stationary and photoinduced photoconductivity, were studied in Bi12SiO20 single crystals doped with non-transition metal ions (Al, Ga, Sn) and transition metal ions (Fe, Cr, Cu, Mn, V, Ag, Mo). It was found that transition metal ions create deep localized centers. In this case, the photochromic effect is controlled by intracenter transitions in those ions whose concentration rises due to photochemical reactions. In crystals doped with non-transition metal ions, the photochromic effect is driven by the redistribution of charge carriers among local levels within the band gap, whose structure is altered by the dopants. In both cases, photoinduced photoconductivity mainly depends on changes in the distribution of carrier recombination currents between fast and slow recombination centers. The possible correlation between the photochromic effect and photoinduced photoconductivity is discussed.
Keywords:
Bi12SiO20 doped crystals, absorption spectra, photochromic effect, induced photoconductivity
UDC:
535.33
- Günter, P., Huignard, J.-P. Photorefractive Materials and Their Applications: Part 1 (2006). Springer: New York.
doi:10.1007/b106782 - Günter, P., Huignard, J. Photorefractive Materials and Their Applications: Parts 2 & 3 (2007). Springer: New York.
doi:10.1007/978-0-387-34728-8 - Mallick, S., Miteva, M., & Nikolova, L. (1997). Polarization properties of self-diffraction in sillenite crystals: reflection volume gratings. Journal of the Optical Society of America B, 14(5), 1179-1186.
doi:10.1364/JOSAB.14.001179 - Gesualdi, M. R. D. R., Barbosa, E. A., & Muramatsu, M. (2006). Advances in phase-stepping real-time holography using photorefractive sillenite crystals. Journal of Optoelectronics and Advanced Materials, 8(4), 1574.
- Montemezzani, G., & Zgonik, M. (1997). Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries. Physical Review E, 55(1), 1035.
doi:10.1103/PhysRevE.55.1035 - Khromov, A. L., Kamshilin, A. A., & Petrov, M. P. (1990). Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals. Optics Communications, 77(2-3), 139-143.
doi:10.1016/0030-4018(90)90423-Q - Lima, A. F. D., Farias, S. A. D. S., & Lalic, M. V. (2011). Structural, electronic, optical, and magneto-optical properties of Bi12MO20 (M= Ti, Ge, Si) sillenite crystals from first principles calculations. Journal of Applied Physics, 110(8).
doi:10.1063/1.3652751 - Panchenko, T. V., & Kopylova, S. Y. (2005). Photochromic properties of the doped Bi12SiO20 crystals. Ferroelectrics, 322(1), 69-74.
doi:10.1080/00150190500315251 - Briat, B., Reyhers, H. J., Hamri, A., Romanov, N. G., Launay, J. C., & Ramaz, F. (1995). Magnetic circular dichroism and the optical detection of magnetic resonance for the Bi antisite defect in Bi12GeO20. Journal of Physics: Condensed Matter, 7(34), 6951.
doi:10.1088/0953-8984/7/34/017 - Panchenko, T.V., Dyachenko, A.A. (2015). Excitation and erasure of photochromic effect in Bi12SiO20 crystals doped with Al, Ga and Sn. Ukrainian Journal of Physical Optics, 16, 127-133.
doi:10.3116/16091833/16/3/127/2015 - Marinova, V., Veleva, M., Petrova, D., Kourmoulis, I. M., Papazoglou, D. G., Apostolidis, A. G., Vanidhis, E. D. & Deliolanis, N. C. (2001). Optical properties of Bi12SiO20 single crystals doped with 4d and 5d transition elements. Journal of Applied Physics, 89(5), 2686-2689.
doi:10.1063/1.1344918 - Nechitailov, A., Krasinkova, M., Mokrushina, E., Petrov, A., Kartenko, N., Prokofiev, V. (2000). Impurity defects in Cr-doped Bi12SiO20 and Bi12TiO20. Inorg. Mater. 36, 820-825.
doi:10.1007/BF02758604 - Żmija, J., & Małachowski, M. (2008). Photochromic effects in sillenite single crystals. Archives of Materials Science and Engineering, 33(2), 101-106.
- Petkova, P., Vasilev, P., Mustafa, M., & Parushev, I. (2015). Vanadium States in Doped Bi12SiO20. Materials Science, 21(2), 167-172.
doi:10.5755/j01.ms.21.2.6140 - Ramaz, F., Rakitina, L., Gospodinov, M., & Briat, B. (2005). Photorefractive and photochromic properties of ruthenium-doped Bi12SiO20. Optical Materials, 27(10), 1547-1559.
doi:10.1016/j.optmat.2004.11.007 - Egorisheva, A., Burkov, V., Kargin, Yu., Vasiliev, A., Volkov, V., Skorikov, V. (2001). Spectroscopic characteristics of Bi12SiO20 and Bi12TiO20 crystals doped with Mn, Mn/P, Cr/P, Cr/Ga and Cr/Cu. Inorg. Mater. 37, 965-973.
doi:10.1023/A:1017991500219 - Panchenko, T. V., & Strelets, K. Y. (2008). Photochromism in Cu-and Ag-doped Bi12SiO20 crystals. Physics of the Solid State, 50(10), 1900-1907.
doi:10.1134/S1063783408100193 - Panchenko, T.V., Strelets, K.Yu. (2009). Photochromic effect in Bi₁₂SiO₂₀ crystals doped with molybdenum. Physics of the Solid State, 51, 292-297.
doi:10.1134/S1063783409020140 - Panchenko, T. V., Osetsky, Y. G., & Truseyeva, N. A. (1996). Photo-and electrochromic effects in Fe-and Cu-doped Bi12SiO20 crystals. In Ferroelectrics (pp. 61-70).
doi:10.1080/00150199508216934 - Panchenko, T. V. (1998). Induced impurity photoconductivity in crystals of Si-and Ge-sillenites. Physics of the Solid State, 40(6), 938-940.
doi:10.1134/1.1130452 - Grachev, A. I. (1999). Holographic recording in photorefractive crystals with nonstationary and nonlinear photoconductivity. Physics of the Solid State, 41(6), 922-927.
doi:10.1134/1.1130905 - Kamshilin, A. A., Kobozev, O. V., Grachev, A. I., & Karavaev, P. M. (2002). Manifestation of long-lived photosensitivity gratings in two-wave mixing experiments with sillenite crystals. Journal of the Optical Society of America B, 19(2), 202-207.
doi:10.1364/JOSAB.19.000202 - Siebenhofer, M., Viernstein, A., Morgenbesser, M., Fleig, J., & Kubicek, M. (2021). Photoinduced electronic and ionic effects in strontium titanate. Materials Advances, 2(23), 7583-7619.
doi:10.1039/D1MA00906K - Aldrich, R. E., Hou, S. L., & Harvill, M. L. (1971). Electrical and optical properties of Bi12SiO20. Journal of Applied Physics, 42(1), 493-494.
doi:10.1063/1.1659638 - Briat, B., Panchenko, T. V., Rjeily, H. B., & Hamri, A. (1998). Optical and magneto-optical characterization of the Al acceptor levels in Bi12SiO20. Journal of the Optical Society of America B, 15(7), 2147-2153.
doi:10.1364/JOSAB.15.002147 - Panchenko, T. V., Dyachenko, A. A., & Khmelenko, O. V. (2016). Photoluminescence of Bi12SiO20 crystals. Ukrainian Journal of Physical Optics, 17(1), 39-45.
doi:10.3116/16091833/17/1/39/2016 - Panchenko, T. V., & Truseyeva, N. A. (1991). Optical absorption and photochromic effect in Cr and Mn doped Bi12SiO20 single crystals. Ferroelectrics, 115(1), 73-80.
doi:10.1080/00150199108014480 - Panchenko, T. V., & Truseyeva, N. A. (1996, January). Photochromism of Bi12SiO20 crystals doped with transition-metal ions of Fe group. In Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transitional-Metal Ions (Vol. 2706, pp. 83-92). SPIE.
doi:10.1117/12.229130 - Tanabe, Y., & Sugano, S. (1954). On the absorption spectra of complex ions II. Journal of the Physical Society of Japan, 9(5), 766-779.
doi:10.1143/JPSJ.9.766 - Grabmaier, B. C., & Oberschmid, R. (1986). Properties of Pure and Doped Bi12GeO20 and Bi12SiO20 Crystals. Physica Status Solidi (a), 96(1), 199-210.
doi:10.1002/pssa.2210960124 - Lever, A. B.P. (1984). Inorganic Electronic Spectroscopy. Elsevier: Amsterdam.
- Solé, J., Bausa, L., & Jaque, D. (2005). An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons.
doi:10.1002/0470016043 - Wardzyński, W., Baran, M., & Szymczak, H. (1981). Electron paramagnetic resonance of Fe3+ in bismuth germanium oxide single crystals. Physica B+ C, 111(1), 47-50.
doi:10.1016/0378-4363(81)90163-7 - Panchenko T.V., Trubitsyn M. P. (2023). Thermally induced effects in the optical absorption of pure and doped Bi12SiO20 single crystals. Ukrainian Journal of Physical Optics, 24(4), 04001 - 04007.
doi:10.3116/16091833/24/4/04001/2023 - Panchenko, T. V., Yanchuk, Z. Z. (1996). Photoelectric properties of crystals Bi₁₂SiO₂₀. Physics of the Solid State 38, 1113-1118.
- Panchenko, T. V., Yanchuk, Z. Z. (1996). Photoconductivity of doped Bi₁₂SiO₂₀ crystals. Physics of the Solid State 38, 3042-3046.
-
У спектральному діапазоні 0,5–3,5 еV досліджено стаціонарне та фотоіндуковане оптичне поглинання, а також стаціонарну та фотоіндуковану фотопровідність у монокристалах Bi12SiO20, легованих іонами неперехідних Al, Ga, Sn) і перехідних металів (Fe, Cr, Cu, Mn, V, Ag, Mo). Показано, що іони перехідних металів створюють глибокі локалізовані центри. При цьому фотохромний ефект визначається внутрішньоцентровими переходами в тих іонах, концентрація яких збільшується внаслідок фотохімічних реакцій. У кристалах з іонами неперехідних металів фотохромний ефект залежить від розподілу носіїв заряду по локальних рівнях забороненої зони, структура яких змінена цими іонами. В обох випадках фотоіндукована фотопровідність визначається, в основному, зміною розподілу рекомбінаційних потоків носіїв заряду між центрами швидкої та повільної рекомбінації. Аналізується можливість взаємозв'язку між фотохромним ефектом і фотоіндукованою фотопровідністю.
Ключові слова: леговані кристали Bi12SiO20, спектри поглинання, фотохромний ефект, індукована фотопровідність
This work is licensed under CC BY 4.0