Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 4


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

SYMMETRY-ADAPTED LIE ALGEBRAIC FRAMEWORK FOR MODELING THE VIBRATIONAL MODES OF SULFUR HEXAFLUORIDE

Vijayasekhar Jaliparthi, Venkateswara Rao Mannepalli and Amal S. Alali


ABSTRACT

The vibrational modes of sulfur hexafluoride (SF6) are analyzed using a symmetry-adapted U(2) Lie algebraic approach. In the context of Oh point group symmetry, the Hamiltonian constructed with Casimir and Majorana operators includes anharmonicity and intermode coupling. The fundamental modes, measured with high precision, show a very close match, with RMS deviations of less than 1 cm-1, aligning well with experimental data. The model also predicts the positions of combination bands and overtones to demonstrate its capabilities further. This method greatly enhances spectroscopic studies of atmospheric science compared to traditional approaches for modeling high-symmetry polyatomic molecules.

Keywords: Sulfur hexafluoride, vibrational modes, Hamiltonian, Casimir and Majorana operators

UDC: 539.17, 539.2, 530.12, 539.120.2

    1. Bruska, M. K., & Piechota, J. (2008). Density functional study of sulphur hexafluoride (SF6) and its hydrogen derivatives. Molecular Simulation, 34(10-15), 1041-1050.
      doi:10.1080/08927020802258708
    2. Dincer, S. E. B. L. A., Dincer, M. S., Duzkaya, H., & Tezcan, S. S. (2019, October). Analysis of molecular orbital properties of SF6 with density functional theory (DFT). In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1-4). IEEE.
      doi:10.1109/ISMSIT.2019.8932772
    3. Johansson, M. P., Kaila, V. R., & Sundholm, D. (2012). Ab initio, density functional theory, and semi-empirical calculations. In Biomolecular Simulations: Methods and Protocols (pp. 3-27). Totowa, NJ: Humana Press.
      doi:10.1007/978-1-62703-017-5_1
    4. Xiaofeng, Z., Yibin, L., Yilong, Z., & Bei, Z. (2024). Determination of ammonia nitrogen by surface-enhanced Raman spectroscopy and DFT studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 323, 124814.
      doi:10.1016/j.saa.2024.124814
    5. Enneiymy, M., Mohammad-Salim, H. A., Oubella, A., de Julián-Ortiz, J. V., Tsahnang Fofack, H. M., Alotaibi, S. A., Maraf, M., & Ait Itto, M. Y. (2025). In-Silico Analysis of Benzo-Selenadiazole Hybrids: Reactivity and Anticancer Potential Assessed Through DFT, Molecular Dynamics, Molecular Docking, and ADMET. Polycyclic Aromatic Compounds, 1-23.
      doi:10.1080/10406638.2025.2470274
    6. Khan, A., Agrawal, N., Chaudhary, R., Yadav, A., Pandey, J., Narayan, A., Ali, S. A. A., Tandon, P., & Vangala, V. R. (2025). Study of chemical reactivity and molecular interactions of the hydrochlorothiazide-4-aminobenzoic acid cocrystal using spectroscopic and quantum chemical approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 324, 124960.
      doi:10.1016/j.saa.2024.124960
    7. Sharma, P., Ranjan, P., & Chakraborty, T. (2024). Applications of conceptual density functional theory in reference to quantitative structure-activity/property relationship. Molecular Physics, 122(23), e2331620.
      doi:10.1080/00268976.2024.2331620
    8. Zois, K. P., & Tzeli, D. (2024). A critical look at density functional theory in chemistry: Untangling its strengths and weaknesses. Atoms, 12(12), 65.
      doi:10.3390/atoms12120065
    9. Dunham, J. L. (1932). The energy levels of a rotating vibrator. Physical Review, 41(6), 721.
      doi:10.1103/PhysRev.41.721
    10. Choudhury, J., Karumuri, S. R., Sinha, R., Sarkar, N. K., & Bhattacharjee, R. (2010). Vibrational spectra of H2O and CF4 molecules using Lie algebraic approach. Indian Journal of Physics, 84(6), 659-664.
      doi:10.1007/s12648-010-0067-2
    11. Choudhury, J., Sarkar, N. K., & Bhattacharjee, R. (2013). Infrared spectra of PH₃ and NF₃: An algebraic approach. Chinese Physics Letters, 30(7), 070301.
      doi:10.1088/0256-307X/30/7/070301
    12. Rey, M., Chizhmakova, I. S., Nikitin, A. V., & Tyuterev, V. G. (2021). Towards a complete elucidation of the ro-vibrational band structure in the SF6 infrared spectrum from full quantum-mechanical calculations. Physical Chemistry Chemical Physics, 23(21), 12115-12126.
      doi:10.1039/D0CP05727D
    13. Dervos, C. T., & Vassiliou, P. (2000). Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation. Journal of the Air & Waste Management Association, 50(1), 137-141.
      doi:10.1080/10473289.2000.10463996
    14. Kolomiĭtsova, T. D., Kondaurov, V. A., & Sedelkova, E. V. (2002). Isotope effects in the vibrational spectrum of the SF₆ molecule. Optics and Spectroscopy, 92, 512-516.
      doi:10.1134/1.1473589
    15. Ke, H., Boudon, V., Richard, C., Madhur, V., Faye, M., & Manceron, L. (2020). Analysis and modeling of combination bands of sulfur hexafluoride 32SF6 based on global fits. Update of the SHeCaSDa database. Journal of Molecular Spectroscopy, 368, 111251.
      doi:10.1016/j.jms.2020.111251
    16. Boccalini, M., Cammi, R., Pagliai, M., Cardini, G., & Schettino, V. (2021). Toward an understanding of the pressure effect on the intramolecular vibrational frequencies of sulfur hexafluoride. The Journal of Physical Chemistry A, 125(29), 6362-6373.
      doi:10.1021/acs.jpca.1c02595
    17. Wagner, N. L., Wüest, A., Christov, I. P., Popmintchev, T., Zhou, X., Murnane, M. M., & Kapteyn, H. C. (2006). Monitoring molecular dynamics using coherent electrons from high harmonic generation. Proceedings of the National Academy of Sciences, 103(36), 13279-13285.
      doi:10.1073/pnas.0605178103
    18. Oss, S. (2009). Algebraic models in molecular spectroscopy. Advances in chemical physics: new methods in computational quantum mechanics/S, 455-469.
      doi:10.1002/9780470141526.ch8
    19. Iachello, F., & Levine, R. D. (1995). Algebraic theory of molecules. Oxford University Press.
      doi:10.1093/oso/9780195080919.001.0001
    20. Nallagonda, S., & Jaliparthi, V. (2024). Higher overtone vibrational frequencies in naphthalene using the Lie algebraic technique. Ukr. J. Phys. Opt, 25(2), 02080-02085.
      doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.02080
    21. Teppala, S., & Jaliparthi, V. (2024). Exploring cyclohexane vibrational dynamics through a Lie algebraic Hamiltonian framework. Ukr. J. Phys. Opt, 25(3), 03093-03100.
      doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.03093
    22. Jaliparthi, V., & Balla, M. R. (2022). Vibrational Hamiltonian of tetrachloro-, tetrafluoro-, and mono-silanes using U(2) Lie algebras. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120289.
      doi:10.1016/j.saa.2021.120289
    23. Sarkar, N. K. (2021). Study of vibrational spectra and dissociation energies in dihaloacetylenes with equivalent and different halogens: an algebraic approach. Molecular Physics, 119(6), e1836409.
      doi:10.1080/00268976.2020.1836409
    24. Ziadi, K., & Bouldjedri, A. (2016). Algebraic study of vibrational spectra of the tetra-atomic molecules ¹⁵N¹²C¹²N¹⁵ and ¹⁴N¹³C¹³N¹⁴. Journal of Theoretical and Computational Chemistry, 15(6), 1650036.
      doi:10.1142/S021963361650036X
    25. Sarkar, N. K., Choudhury, J., Karumuri, S. R., & Bhattacharjee, R. (2008). An algebraic approach to the comparative study of the vibrational spectra of monofluoroacetylene (HCCF) and deuterated acetylene (HCCD). Molecular Physics, 106(5), 693-702.
      doi:10.1080/00268970801939019
    26. Rubin, B., McCubbin, T. K., & Polo, S. R. (1978). Vibrational Raman spectrum of SF₆. Journal of Molecular Spectroscopy, 69(2), 254-259.
      doi:10.1016/0022-2852(78)90063-2
    27. Chapados, C., & Birnbaum, G. (1988). Infrared absorption of SF₆ from 32 to 3000 cm⁻¹ in the gaseous and liquid states. Journal of Molecular Spectroscopy, 132(1), 32-50.
      doi:10.1016/0022-2852(88)90329-3
    28. Boudon, V., Manceron, L., Tchana, F. K., Loëte, M., Lago, L., & Roy, P. (2014). Resolving the forbidden band of SF6. Physical Chemistry Chemical Physics, 16(4), 1415-1423.
      doi:10.1039/C3CP54175D
    29. Wilson, E. B., Decius, J. C., & Cross, P. C. (1980). Molecular vibrations: the theory of infrared and Raman vibrational spectra. Courier Corporation.
    30. Irikura, K. K. (2007). Experimental vibrational zero-point energies: Diatomic molecules. Journal of Physical and Chemical Reference Data, 36(2), 389-397.
      doi:10.1063/1.2436891
    31. Xu, Y., Guo, Y., & Wang, B. (2022). Quantum chemical calculation of normal vibration frequencies of polyatomic molecules. Chinese Journal of Physics, 71, 093101.
      doi:10.7498/aps.71.20212108
    32. Dridi, N., Boudon, V., Faye, M., & Manceron, L. (2022). Nitrogen-broadening parameters for atmospheric spectra modelling of the ν3 Band of SF6. Molecules, 27(3), 646.
      doi:10.3390/molecules27030646

    В роботі досліджені коливальні моди гексафториду сірки (SF6) за допомогою симетрично адаптованого алгебраїчного підходу Лі U(2). У контексті симетрії точкової групи Oh , гамільтоніан, сформований за допомогою операторів Казиміра та Майорани, включає ангармонізм та міжмодовий зв'язок. Фундаментальні моди демонструють високий рівень точності, зі середньоквадратичними відхиленнями менше одного см-1, що відмінно узгоджується з експериментальними значеннями. Модель також прогнозує розташування комбінаційних смуг та обертонів, щоб додатково продемонструвати її можливості. Цей метод робить значний внесок у спектроскопічні дослідження атмосферної науки, на відміну від традиційних підходів до моделювання поліатомних молекул з високою симетрією.

    Ключові слова: гексафторид сірки, коливальні моди, гамільтоніан, оператори Казиміра та Майорани


This work is licensed under CC BY 4.0