Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 4


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

OPTICAL SOLITONS FOR THE DISPERSIVE CONCATENATION MODEL WITH KERR LAW OF SELF-PHASE MODULATION BY LIE SYMMETRY

R. Yadav, S. Kumar, A.M. Elsherbeny, Y. Yildirim, M.J. Jweeg, A.M.K. Al-Dulaimi, L. Moraru and A. Biswas


ABSTRACT

This study delves into the realm of new optical solitons within the framework of the dispersive concatenation model, specifically focusing on Kerr law self-phase modulation. The research employs Lie Symmetry Analysis to transform the complex governing equations into ordinary differential equations (ODEs). These ODEs are then tackled using two distinct methodologies: the F-expansion method and a novel generalized method. Through these approaches, a broad spectrum of soliton solutions is successfully derived, showcasing the robustness and effectiveness of the proposed techniques. Additionally, the physical interpretations of these solutions are illustrated via 3D profile plots, offering profound insights into the intricate behavior of the solitons.

Keywords: optical solitons, new generalized method, concatenation model, Lie symmetry analysis, F-expansion method, power-law

UDC: 535.32

    1. Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361.
      doi:10.1016/j.physleta.2013.11.031
    2. Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907.
      doi:10.1103/PhysRevE.89.012907
    3. Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2014). Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Physical Review E, 90(3), 032922.
      doi:10.1103/PhysRevE.90.032922
    4. Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2015). Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Physical Review E, 91(2), 022919.
      doi:10.1103/PhysRevE.91.022919
    5. Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N. (2015). Breather–to–soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Physical Review E, 91, 032928.
      doi:10.1103/PhysRevE.91.032928
    6. Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361.
      doi:10.1016/j.physleta.2013.11.031
    7. Abdou, M. A. (2007). The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos, Solitons & Fractals, 31(1), 95-104.
      doi:10.1016/j.chaos.2005.09.030
    8. Ali, M. R., Khattab, M. A., & Mabrouk, S. M. (2023). Investigation of travelling wave solutions for the (3+ 1)-dimensional hyperbolic nonlinear Schrödinger equation using Riccati equation and F-expansion techniques. Optical and Quantum Electronics, 55(11), 991.
      doi:10.1007/s11082-023-05236-3
    9. Al-Kalbani, K. K., Al-Ghafri, K. S., Krishnan, E. V., & Biswas, A. (2023). Optical solitons and modulation instability analysis with Lakshmanan-Porsezian-Daniel model having parabolic law of self-phase modulation. Mathematics, 11(11), 2471.
      doi:10.3390/math11112471
    10. Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907.
      doi:10.1103/PhysRevE.89.012907
    11. Biswas, A., Vega-Guzman, J., Kara, A. H., Khan, S., Triki, H., Gonzalez-Gaxiola, O., Moraru, L,. & Georgescu, P. L. (2022). Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach. Universe, 9(1), 15.
      doi:10.3390/universe9010015
    12. Biswas, A., Vega-Guzman, J., Yıldırım, Y., Moraru, L., Iticescu, C., & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with differential group delay: undetermined coefficients. Mathematics, 11(9), 2012.
      doi:10.3390/math11092012
    13. Bluman, G. W., & Anco, S. C. (2002). Symmetry and integration methods for differential equations. New York, NY: Springer New York.
    14. Kukkar, A., Kumar, S., Malik, S., Biswas, A., Yıldırım, Y., Moshokoa, S. P., Khan, S, & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with Kurdryashov's approaches. Ukrainian Journal of Physical Optics, 24(2).
      doi:10.3116/16091833/24/2/155/2023
    15. Kumar, S., Malik, S., Biswas, A., Zhou, Q., Moraru, L., Alzahrani, A. K., & Belic, M. R. (2020). Optical solitons with Kudryashov's equation by Lie symmetry analysis. Physics of Wave Phenomena, 28(3), 299-304.
      doi:10.3103/S1541308X20030127
    16. Olver, P. J. (1993). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
      doi:10.1007/978-1-4612-4350-2
    17. Wang, M. Y., Biswas, A., Yıldırım, Y., & Alshomrani, A. S. (2023). Optical solitons for dispersive concatenation model with Kerr law nonlinearity by the complete discriminant method. Journal of Optics, 1-9.
      doi:10.1007/s12596-023-01550-x
    18. Yıldırım, Y., Biswas, A., Moraru, L., & Alghamdi, A. A. (2023). Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics, 11(7), 1709.
      doi:10.3390/math11071709
    19. Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398.
      doi:10.1007/s12596-022-00963-4
    20. Özkan, Y. S., & Yaşar, E. (2024). Three efficient schemes and highly dispersive optical solitons of perturbed Fokas-Lenells equation in stochastic form. Ukrainian Journal of Physical Optics, 25(5), S1017 - S1038.
      doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.S1017

    Це дослідження заглиблюється в сферу нових оптичних солітонів у рамках моделі дисперсійної конкатенації, особливо зосереджуючись на самофазовій модуляції за законом Керра. Дослідження використовує симетричний аналіз Лі для перетворення складних керуючих рівнянь у звичайні диференціальні рівняння (ODE). Потім ці ODE розглядаються за допомогою двох різних методологій: методу F-розширення та нового узагальненого методу. За допомогою цих підходів успішно отримано широкий спектр солітонних рішень, що демонструє надійність і ефективність запропонованих методів. Крім того, фізичні інтерпретації цих рішень проілюстровано за допомогою 3D-профілів, які пропонують глибоке розуміння складної поведінки солітонів.

    Ключові слова: новий узагальнений метод, метод конкатенації, аналіз симетрії Лі, метод F-розкладу,степеневий закон, солітони


This work is licensed under CC BY 4.0