Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 5


ISSN 1609-1833 (Print)

W-SHAPED SOLITONS UNDER INHOMOGENEOUS SELF-DEFOCUSING KERR NONLINEARITY

1Xuzhen Gao, 2Jincheng Shi, 3Milivoj R. Belic, 4Junbo Chen, 5Jiawei Li, 6,7Liangwei Zeng and 6Xing Zhu

1Department of Physics, Lyuliang University, Lishi, Shanxi 033001, China
254th Research Institute of CETC, Sh?iazhuang 050011, China, jinchengshi1989@hotmail.com
3Division of Arts and Sciences, Texas A&M University at Qatar, 23874 Doha, Qatar
4School of Physics and Electronic Engineering, Jiaying University, Meizhou 514015, China
5Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, China
6Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China
7College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

ABSTRACT

We demonstrate W-shaped solitons sustained under the inhomogeneous self-defocusing Kerr nonlinearity in the nonlinear Schrӧdinger equation. These solitons are dark or gray beams that ride on a constant background. We obtain different types of W-shaped solitons when the parameters in the equation are set suitably. All W-shaped solitons found are stable, established by the linear stability analysis, and checked by direct numerical simulation. Power defect arising in these soliton families is also investigated, and we find that the power defect change with the propagation constant is nearly linear. Besides standard perturbed propagation, we also display propagation with modulated parameters and find that the sudden variation of the appropriate parameter leads to unacceptable distortions and instability in the solution, while the gradual change of the parameter restores regular stable behavior.

Keywords: W-shaped solitons, Kerr nonlinearity, self-defocusing, Schrodinger equation

UDC: 535.32

    1. Kartashov, Y. V., Malomed, B. A., & Torner, L. (2011). Solitons in nonlinear lattices. Reviews of Modern Physics, 83(1), 247. doi:10.1103/RevModPhys.83.247
    2. Konotop, V. V., Yang, J., & Zezyulin, D. A. (2016). Nonlinear waves in PT-symmetric systems. Reviews of Modern Physics, 88(3), 035002. doi:10.1103/RevModPhys.88.035002
    3. Kartashov, Y. V., Astrakharchik, G. E., Malomed, B. A., & Torner, L. (2019). Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nature Reviews Physics, 1(3), 185-197. doi:10.1038/s42254-019-0025-7
    4. Mihalache, D. (2021). Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys, 73(2), 403.
    5. Zhu, X., Wang, H., Li, H., He, W., & He, Y. (2013). Two-dimensional multipeak gap solitons supported by parity-time-symmetric periodic potentials. Optics Letters, 38(15), 2723-2725. doi:10.1364/OL.38.002723
    6. Yıldırım, Y., Biswas, A., Guggilla, P., Khan, S., Alshehri, H. M., & Belic, M. R. (2021). Optical solitons in fibre Bragg gratings with third-and fourth-order dispersive reflectivities. Ukr. J. Phys. Opt., 22(4), 239-254. doi:10.3116/16091833/22/4/239/2021
    7. Zeng, L., Konotop, V. V., Lu, X., Cai, Y., Zhu, Q., & Li, J. (2021). Localized modes and dark solitons sustained by nonlinear defects. Optics Letters, 46(9), 2216-2219. doi:10.1364/OL.424389
    8. Zeng, L., Belić, M. R., Mihalache, D., Li, J., Xiang, D., Zeng, X., & Zhu, X. (2023). Solitons in a coupled system of fractional nonlinear Schrödinger equations. Physica D: Nonlinear Phenomena, 456, 133924. doi:10.1016/j.physd.2023.133924
    9. Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F., & Ferrari, G. (2013). Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate. Nature Physics, 9(10), 656-660. doi:10.1038/nphys2734
    10. Henderson, G. W., Robb, G. R., Oppo, G. L., & Yao, A. M. (2022). Control of light-atom solitons and atomic transport by optical vortex beams propagating through a Bose-Einstein Condensate. Physical Review Letters, 129(7), 073902. doi:10.1103/PhysRevLett.129.073902
    11. Zeng, L., Zhu, Y., Malomed, B. A., Mihalache, D., Wang, Q., Long, H., Cai, X. Lu, & Li, J. (2022). Quadratic fractional solitons. Chaos, Solitons & Fractals, 154, 111586. doi:10.1016/j.chaos.2021.111586
    12. Zhu, X., Xiang, D., & Zeng, L. (2023). Fundamental and multipole gap solitons in spin-orbit-coupled Bose-Einstein condensates with parity-time-symmetric Zeeman lattices. Chaos, Solitons & Fractals, 169, 113317. doi:10.1016/j.chaos.2023.113317
    13. Bergé, L. (1998). Wave collapse in physics: principles and applications to light and plasma waves. Physics Reports, 303(5-6), 259-370. doi:10.1016/S0370-1573(97)00092-6
    14. Bergé, L. (2000). Soliton stability versus collapse. Physical Review E, 62(3), R3071. doi:10.1103/PhysRevE.62.R3071
    15. Bartal, G., Manela, O., Cohen, O., Fleischer, J. W., & Segev, M. (2005). Observation of second-band vortex solitons in 2D photonic lattices. Physical Review Letters, 95(5), 053904. doi:10.1103/PhysRevLett.95.053904
    16. Desyatnikov, A. S., Ostrovskaya, E. A., Kivshar, Y. S., & Denz, C. (2003). Composite band-gap solitons in nonlinear optically induced lattices. Physical Review Letters, 91(15), 153902. doi:10.1103/PhysRevLett.91.153902
    17. Islam, M. J., & Atai, J. (2018). Stability of moving gap solitons in linearly coupled Bragg gratings with cubic-quintic nonlinearity. Nonlinear Dynamics, 91, 2725-2733. doi:10.1007/s11071-017-4042-8
    18. Zeng, L., Belić, M. R., Mihalache, D., Shi, J., Li, J., Li, S., Lu, X., Cai, Y. & Li, J. (2022). Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dynamics, 108(2), 1671-1680. doi:10.1007/s11071-022-07291-z
    19. Zhu, X., Yang, F., Cao, S., Xie, J., & He, Y. (2020). Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices. Optics Express, 28(2), 1631-1639. doi:10.1364/OE.382876
    20. Kartashov, Y. V. (2013). Vector solitons in parity-time-symmetric lattices. Optics Letters, 38(14), 2600-2603. doi:10.1364/OL.38.002600
    21. Lobanov, V. E., Kartashov, Y. V., & Konotop, V. V. (2014). Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose-Einstein condensates. Physical Review Letters, 112(18), 180403. doi:10.1103/PhysRevLett.112.180403
    22. Zeng, L., Shi, J., Belić, M. R., Mihalache, D., Chen, J., Li, J., & Zhu, X. (2023). Surface gap solitons in the Schrödinger equation with quintic nonlinearity and a lattice potential. Optics Express, 31(22), 35471-35483. doi:10.1364/OE.497973
    23. Zeng, L., Belić, M. R., Mihalache, D., Xiang, D., Wang, Q., Yang, J., & Zhu, X. (2023). Triangular bright solitons in nonlinear optics and Bose-Einstein condensates. Optics Express, 31(6), 9563-9578. doi:10.1364/OE.483721
    24. Kartashov, Y. V., Malomed, B. A., Vysloukh, V. A., & Torner, L. (2009). Two-dimensional solitons in nonlinear lattices. Optics Letters, 34(6), 770-772. doi:10.1364/OL.34.000770
    25. Abdullaev, F. K., Kartashov, Y. V., Konotop, V. V., & Zezyulin, D. A. (2011). Solitons in PT-symmetric nonlinear lattices. Physical Review A, 83(4), 041805. doi:10.1103/PhysRevA.83.041805
    26. Zeng, L., & Zeng, J. (2019). One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Optics Letters, 44(11), 2661-2664. doi:10.1364/OL.44.002661
    27. Zeng, L., Mihalache, D., Malomed, B. A., Lu, X., Cai, Y., Zhu, Q., & Li, J. (2021). Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension. Chaos, Solitons & Fractals, 144, 110589. doi:10.1016/j.chaos.2020.110589
    28. Kartashov, Y. V., Malomed, B. A., Vysloukh, V. A., & Torner, L. (2009). Vector solitons in nonlinear lattices. Optics Letters, 34(23), 3625-3627. doi:10.1364/OL.34.003625
    29. Zeng, L., Shi, J., Li, J., Li, J., & Wang, Q. (2022). Dark soliton families in quintic nonlinear lattices. Optics Express, 30(23), 42504-42511. doi:10.1364/OE.472311
    30. Shi, J., Zeng, L., & Chen, J. (2023). Two-dimensional localized modes in saturable quintic nonlinear lattices. Nonlinear Dynamics, 1-10. doi:10.1007/s11071-023-08558-9
    31. Zeng, L., Shi, J., Belić, M. R., Mihalache, D., Chen, J., Long, H., Lu, X., Cai, Y.& Li, J. (2023). Multipole solitons in saturable nonlinear lattices. Nonlinear Dynamics, 111(4), 3665-3678. doi:10.1007/s11071-022-07988-1
    32. Borovkova, O. V., Kartashov, Y. V., Torner, L., & Malomed, B. A. (2011). Bright solitons from defocusing nonlinearities. Physical Review E, 84(3), 035602. doi:10.1103/PhysRevE.84.035602
    33. Kartashov, Y. V., Lobanov, V. E., Malomed, B. A., & Torner, L. (2012). Asymmetric solitons and domain walls supported by inhomogeneous defocusing nonlinearity. Optics Letters, 37(23), 5000-5002. doi:10.1364/OL.37.005000
    34. Driben, R., Kartashov, Y. V., Malomed, B. A., Meier, T., & Torner, L. (2014). Three-dimensional hybrid vortex solitons. New Journal of Physics, 16(6), 063035. doi:10.1088/1367-2630/16/6/063035
    35. Driben, R., Dror, N., Malomed, B. A., & Meier, T. (2015). Multipoles and vortex multiplets in multidimensional media with inhomogeneous defocusing nonlinearity. New Journal of Physics, 17(8), 083043. doi:10.1088/1367-2630/17/8/083043
    36. Zeng, L., Malomed, B. A., Mihalache, D., Cai, Y., Lu, X., Zhu, Q., & Li, J. (2021). Flat-floor bubbles, dark solitons, and vortices stabilized by inhomogeneous nonlinear media. Nonlinear Dynamics, 106(1), 815-830. doi:10.1007/s11071-021-06834-0
    37. Zeng, L., Zeng, J., Kartashov, Y. V., & Malomed, B. A. (2019). Purely Kerr nonlinear model admitting flat-top solitons. Optics Letters, 44(5), 1206-1209. doi:10.1364/OL.44.001206
    38. Kartashov, Y. V., Malomed, B. A., Shnir, Y., & Torner, L. (2014). Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. Physical Review Letters, 113(26), 264101. doi:10.1103/PhysRevLett.113.264101
    39. Driben, R., Kartashov, Y. V., Malomed, B. A., Meier, T., & Torner, L. (2014). Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Physical Review Letters, 112(2), 020404. doi:10.1103/PhysRevLett.112.020404
    40. Zeng, L., Zhu, X., Belić, M. R., Mihalache, D., Shi, J., & Chen, J. (2023). Multiple-peak and multiple-ring solitons in the nonlinear Schrödinger equation with inhomogeneous self-defocusing nonlinearity. Nonlinear Dynamics, 111(6), 5671-5680. doi:10.1007/s11071-022-08110-1
    41. Zhao, L. C., Li, S. C., & Ling, L. (2016). W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation. Physical Review E, 93(3), 032215. doi:10.1103/PhysRevE.93.032215
    42. Triki, H., Porsezian, K., Choudhuri, A., & Tchofo Dinda, P. (2017). W-shaped, bright and kink solitons in the quadratic-cubic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. Journal of Modern Optics, 64(14), 1368-1376. doi:10.1080/09500340.2017.1288834
    43. Bendahmane, I., Triki, H., Biswas, A., Alshomrani, A. S., Zhou, Q., Moshokoa, S. P., & Belic, M. (2018). Bright, dark and W-shaped solitons with extended nonlinear Schrödinger's equation for odd and even higher-order terms. Superlattices and Microstructures, 114, 53-61. doi:10.1016/j.spmi.2017.12.007
    44. Triki, H., Zhou, Q., & Liu, W. (2019). W-shaped solitons in inhomogeneous cigar-shaped Bose-Einstein condensates with repulsive interatomic interactions. Laser Physics, 29(5), 055401. doi:10.1088/1555-6611/ab0a69
    45. Zeng, L., Malomed, B. A., Mihalache, D., Cai, Y., Lu, X., Zhu, Q., & Li, J. (2021). Bubbles and W-shaped solitons in Kerr media with fractional diffraction. Nonlinear Dynamics, 104(4), 4253-4264. doi:10.1007/s11071-021-06459-3
    46. Triki, H., Bensalem, C., Biswas, A., Zhou, Q., Ekici, M., Moshokoa, S. P., & Belic, M. (2019). W-shaped and bright optical solitons in negative indexed materials. Chaos, Solitons & Fractals, 123, 101-107. doi:10.1016/j.chaos.2019.04.003

    Отримано розв’язки для W-подібних солітонів, які є стійкими за умови неоднорідної самодефокусуючої нелінійності Керра в нелинійному рівнянні Шредингера. Ці солітони є темними або сірими пучками, які поширюються на постійному фоні. Отриманя різні типи W-подібних солітонів, при певному встановленні параметрів рівняння. Усі W-подібні солітони є стійкими, що підтверджено лінійним аналізом стійкості, а також перевірено за допомогою прямого чисельного моделювання. Досліджено також дефект потужності, що виникає у цьому сімействі солітонів, і виявлено, що зміна дефекту потужності з константою поширення є майже лінійна. Крім стандартного поширення, продемонстровано можливість поширення з модульованими параметрами і виявлено, що раптова зміна відповідного параметра призводить до неприйнятних спотворень і нестійкості у рішенні, тоді як поступова зміна цього ж параметра відновлює стійку поведінку.

    Ключові слова: W-подібні солітони, керрівська нелінійність, само-дефокусування, рівняння Шредінгера


© Ukrainian Journal of Physical Optics ©