Ukrainian Journal of Physical Optics

2024 Volume 25, Issue 5

ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)


Thilagarajah Mathanaranjan1, M.S. Mani Rajan2, S. Saravana Veni3 and Yakup Yildirim4,5

1Department of Mathematics and Statistics, University of Jaffna, Sri Lanka
2Department of Physics, Anna University, Madurai Region, Ramanathapuram, India
3Department of Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India
4Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey
5Department of Mathematics, Near East University, 99138 Nicosia, Cyprus


This paper uses the extended auxiliary equation method to obtain the exact solutions of the nonlinear Schrödinger equations with variable-coefficient. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, and Jacobi elliptic functions solutions are obtained. The solitons are guaranteed to exist, provided the chromatic dispersion coefficients are Riemann integrable. Further, some of the obtained solutions are presented by 3D and 2D graphs to demonstrate the behavior of solutions. The results show that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding various exact solutions of nonlinear evolution equations with variable coefficients in mathematical physics.

Keywords: Nonlinear Schrodinger equations with variable coefficient, extended auxiliary equation method, optical soliton, elliptic functions solutions

UDC: 535.32

    1. Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23(3), 142-144. doi:10.1063/1.1654836
    2. Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Applied Physics Letters, 23(4), 171-172. doi:10.1063/1.1654847
    3. Kodama, Y., & Hasegawa, A. (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 510-524. doi:10.1109/jqe.1987.1073392
    4. Hasegawa, A., & Hirooka, T. (2000). Stable filter control of wavelength division multiplexed soliton systems. Electronics Letters, 36(1), 68-70. doi:10.1049/el:20000113
    5. Hasegawa, A. (2004). Application of Optical Solitons for Information Transfer in Fibers—A Tutorial Review. Journal of Optics, 33(3), 145-156. doi:10.1007/bf03354760
    6. Mollenauer, L. F., & Gordon, J. P. (2006). Solitons in Pptical Fibers: Fundamentals and Applications. Elsevier.
    7. Haus, H. A., & Wong, W. S. (1996). Solitons in optical communications. Reviews of Modern Physics, 68(2), 423.
    8. Mollenauer, L. F., Mamyshev, P. V., Gripp, J., Neubelt, M. J., Mamysheva, N., Grüner-Nielsen, L., & Veng, T. (2000). Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters, 25(10), 704-706. doi:10.1364/ol.25.000704
    9. Mamyshev, P. V., & Mollenauer, L. F. (1999). Soliton collisions in wavelength-division-multiplexed dispersion-managed systems. Optics Letters, 24(7), 448-450. doi:10.1364/ol.24.000448
    10. Sugahara, H., Kato, H., Inoue, T., Maruta, A., & Kodama, Y. (1999). Optimal dispersion management for a wavelength division multiplexed optical soliton transmission system. Journal of Lightwave Technology, 17(9), 1547. doi:10.1109/50.788560
    11. Jenkins, R. B., Sauer, J. R., Chakravarty, S., & Ablowitz, M. J. (1995). Data-dependent timing jitter in wavelength-division-multiplexing soliton systems. Optics Letters, 20(19), 1964-1966. doi:10.1364/ol.20.001964
    12. Sugahara, H., & Maruta, A. (1999, September). Timing jitter of a strongly dispersion managed soliton in a wavelength-division-multiplexed system. In Nonlinear Guided Waves and Their Applications (p. ThA4). Optica Publishing Group. doi:10.1364/nlgw.1999.tha4
    13. Matera, F., & Wabnitz, S. (1997). Periodic dispersion compensation of soliton wavelength division multiplexed transmissions with sliding filters. Optical Fiber Technology, 3(1), 7-20. doi:10.1006/ofte.1997.0198
    14. Mecozzi, A., Moores, J. D., Haus, H. A., & Lai, Y. (1991). Soliton transmission control. Optics Letters, 16(23), 1841-1843. doi:10.1364/ol.16.001841
    15. Assanto, G., & Smyth, N. F. (2020). Spin-optical solitons in liquid crystals. Physical Review A, 102(3), 033501. doi:10.1103/physreva.102.033501
    16. Li, B., Özdemir, Ş. K., Xu, X. W., Zhang, L., Kuang, L. M., & Jing, H. (2021). Nonreciprocal optical solitons in a spinning Kerr resonator. Physical Review A, 103(5), 053522.
    17. Porras, M. A. (2021). Spatiotemporal optical vortex solitons: Dark solitons with transverse and tilted phase line singularities. Physical Review A, 104(6), L061502. doi:10.1103/physreva.104.l061502
    18. Barashenkov, I. V., & Feinstein, D. (2021). Gyrating solitons in a necklace of optical waveguides. Physical Review A, 103(2), 023532. doi:10.1103/physreva.103.023532
    19. Jin, L., Hang, C., & Huang, G. (2023). Multidimensional optical solitons and their manipulation in a cold atomic gas with a parity-time-symmetric optical Bessel potential. Physical Review A, 107(5), 053501. doi:10.1103/physreva.107.053501
    20. Bai, Y., Zhang, M., Shi, Q., Ding, S., Qin, Y., Xie, Z., Jiang, X & Xiao, M. (2021). Brillouin-Kerr soliton frequency combs in an optical microresonator. Physical Review Letters, 126(6), 063901. doi:10.1103/physrevlett.126.063901
    21. Chen, Z., Xie, H., Li, Q., & Huang, G. (2019). Stern-Gerlach deflection of optical Thirring solitons in a coherent atomic system. Physical Review A, 100(1), 013827. doi:10.1103/physreva.100.013827
    22. Huang, T., Pan, J., Cheng, Z., Xu, G., Wu, Z., Du, T., Zeng, S. & Shum, P. P. (2021). Nonlinear-mode-coupling-induced soliton crystal dynamics in optical microresonators. Physical Review A, 103(2), 023502. doi:10.1103/physreva.103.023502
    23. Maitre, A., Lerario, G., Medeiros, A., Claude, F., Glorieux, Q., Giacobino, E., Pigeon, S. & Bramati, A. (2020). Dark-soliton molecules in an exciton-polariton superfluid. Physical Review X, 10(4), 041028. doi:10.1103/physrevx.10.041028
    24. Li, H., Peng, X., & Shi, Z. (2021). Vector solitons in nonlocal optical media with pseudo spin-orbit-coupling. Physical Review E, 103(2), 022205. doi:10.1103/physreve.103.022205
    25. Malomed, B., Peng, G. D., & Chu, P. L. (1999). Soliton wavelength-division multiplexing system with channel-isolating notch filters. Optics Letters, 24(16), 1100-1102. doi:10.1364/ol.24.001100
    26. Moores, J. D. (1992). Ultra-long distance wavelength-division-multiplexed soliton transmission using inhomogeneously broadened fiber amplifiers. Journal of Lightwave Technology, 10(4), 482-487. doi:10.1109/50.134202
    27. Kivshar, Y. S. (1993). Dark solitons in nonlinear optics. IEEE Journal of Quantum Electronics, 29(1), 250-264. doi:10.1109/3.199266
    28. Kivshar, Y. S., & Luther-Davies, B. (1998). Dark optical solitons: physics and applications. Physics Reports, 298(2-3), 81-197. doi:10.1016/s0370-1573(97)00073-2
    29. Zhou, Q., Xu, M., Sun, Y., Zhong, Y., & Mirzazadeh, M. (2022). Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. Nonlinear Dynamics, 110(2), 1747-1752. doi:10.1007/s11071-022-07673-3
    30. Yang, S., Zhang, Q. Y., Zhu, Z. W., Qi, Y. Y., Yin, P., Ge, Y. Q., Li, L., Jin, L., Zhang, L., & Zhang, H. (2022). Recent advances and challenges on dark solitons in fiber lasers. Optics & Laser Technology, 152, 108116. doi:10.1016/j.optlastec.2022.108116
    31. Wazwaz, A. M. (2020). Optical bright and dark soliton solutions for coupled nonlinear Schrödinger (CNLS) equations by the variational iteration method. Optik, 207, 164457. doi:10.1016/j.ijleo.2020.164457
    32. Karjanto, N., Hanif, W., Malomed, B. A., & Susanto, H. (2015). Interactions of bright and dark solitons with localized PT-symmetric potentials. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(2). doi:10.1063/1.4907556
    33. Yu, G. F., Xu, Z. W., Hu, J., & Zhao, H. Q. (2017). Bright and dark soliton solutions to the AB system and its multi-component generalization. Communications in Nonlinear Science and Numerical Simulation, 47, 178-189. doi:10.1016/j.cnsns.2016.11.014
    34. Zhang, Y., Yang, C., Yu, W., Liu, M., Ma, G., & Liu, W. (2018). Some types of dark soliton interactions in inhomogeneous optical fibers. Optical and Quantum Electronics, 50, 1-8. doi:10.1007/s11082-018-1560-7
    35. Chen, W., Shen, M., Kong, Q., & Wang, Q. (2015). The interaction of dark solitons with competing nonlocal cubic nonlinearities. Journal of Optics, 44, 271-280. doi:10.1007/s12596-015-0255-8
    36. Xu, S. L., Petrović, N., & Belić, M. R. (2015). Two-dimensional dark solitons in diffusive nonlocal nonlinear media. Journal of Optics, 44, 172-177. doi:10.1007/s12596-015-0243-z
    37. Yu, W., Ekici, M., Mirzazadeh, M., Zhou, Q., & Liu, W. (2018). Periodic oscillations of dark solitons in nonlinear optics. Optik, 165, 341-344. doi:10.1016/j.ijleo.2018.03.137
    38. Wang, S. (2023). Novel soliton solutions of CNLSEs with Hirota bilinear method. Journal of Optics, 1-6. doi:10.1007/s12596-022-01065-x
    39. Zhao, X. H. (2021). Dark soliton solutions for a coupled nonlinear Schrödinger system. Applied Mathematics Letters, 121, 107383. doi:10.1016/j.aml.2021.107383
    40. Serkin, V. N. (2018). Busch-Anglin effect for matter-wave and optical dark solitons in external potentials. Optik, 173, 1-12. doi:10.1016/j.ijleo.2018.08.002
    41. Kopcasız, B., & Yaşar, E. (2022). The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms. Journal of Optics, 1-15. doi:10.1007/s12596-022-00998-7
    42. Qin, Y. H., Zhao, L. C., Yang, Z. Q., & Ling, L. (2021). Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive interactions. Physical Review E, 104(1), 014201. doi:10.1103/physreve.104.014201
    43. Chen, J., Chen, Y., Feng, B. F., & Maruno, K. I. (2015). Multi-dark soliton solutions of the two-dimensional multi-component Yajima–Oikawa systems. Journal of the Physical Society of Japan, 84(3), 034002. doi:10.7566/jpsj.84.034002
    44. Singh, M., Sharma, A. K., & Kaler, R. S. (2011). Investigations on optical timing jitter in dispersion managed higher order soliton system. Journal of Optics, 40, 1-7. doi:10.1007/s12596-010-0021-x
    45. Janyani, V. (2008). Formation and Propagation-Dynamics of Primary and Secondary Soliton-Like Pulses in Bulk Nonlinear Media. Journal of Optics, 37, 1-8. doi:10.1007/bf03354831
    46. Zheng, Y., Wang, M., Zhao, R., Zhang, H., Liu, D., & Li, D. (2020). Nonlinear optical absorption properties of zirconium selenide in generating dark soliton and dark-bright soliton pairs. Applied Optics, 59(2), 396-404. doi:10.1364/ao.377776
    47. Zhang, S., Bi, T., Ghalanos, G. N., Moroney, N. P., Del Bino, L., & Del’Haye, P. (2022). Dark-bright soliton bound states in a microresonator. Physical Review Letters, 128(3), 033901. doi:10.1103/physrevlett.128.033901
    48. Priya, N. V., & Senthilvelan, M. (2016). N-bright–bright and N-dark–dark solitons of the coupled generalized nonlinear Schrödinger equations. Communications in Nonlinear Science and Numerical Simulation, 36, 366-377. doi:10.1016/j.cnsns.2015.12.016
    49. Kudryashov, N. A. (2022). Bright and dark solitons in a nonlinear saturable medium. Physics Letters A, 427, 127913. doi:10.1016/j.physleta.2021.127913
    50. Rao, J., Kanna, T., Sakkaravarthi, K., & He, J. (2021). Multiple double-pole bright-bright and bright-dark solitons and energy-exchanging collision in the M-component nonlinear Schrödinger equations. Physical Review E, 103(6), 062214. doi:10.1103/physreve.103.062214
    51. Lü, X., Ma, W. X., Yu, J., Lin, F., & Khalique, C. M. (2015). Envelope bright-and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dynamics, 82, 1211-1220. doi:10.1007/s11071-015-2227-6
    52. Xie, X. Y., Liu, Z. Y., & Xu, D. Y. (2020). Bright-dark soliton, breather and semirational rogue wave solutions for a coupled AB system. Nonlinear Dynamics, 101(1), 633-638. doi:10.1007/s11071-020-05794-1
    53. Guo, B., Yao, Y., Tian, J. J., Zhao, Y. F., Liu, S., Li, M., & Quan, M. R. (2015). Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 27(7), 701-704. doi:10.1109/lpt.2015.2390212
    54. Thi, T. N., & Van, L. C. (2023). Supercontinuum generation based on suspended core fiber infiltrated with butanol. Journal of Optics, 1-10. doi:10.1007/s12596-023-01323-6
    55. Li, Z., & Zhu, E. (2023). Optical soliton solutions of stochastic Schrödinger–Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. Journal of Optics, 1-7. doi:10.1007/s12596-023-01287-7
    56. Zhang, R. F., Li, M. C., & Yin, H. M. (2021). Rogue wave solutions and the bright and dark solitons of the (3+ 1)-dimensional Jimbo–Miwa equation. Nonlinear Dynamics, 103, 1071-1079. doi:10.1007/s11071-020-06112-5
    57. Oreshnikov, I., Driben, R., & Yulin, A. V. (2015). Weak and strong interactions between dark solitons and dispersive waves. Optics Letters, 40(21), 4871-4874. doi:10.1364/ol.40.004871
    58. Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation. Journal of Optics, 1-10. doi:10.1007/s12596-023-01097-x
    59. Nandy, S., & Lakshminarayanan, V. (2015). Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. Journal of Optics, 44, 397-404. doi:10.1007/s12596-015-0270-9
    60. Zeng, L., Konotop, V. V., Lu, X., Cai, Y., Zhu, Q., & Li, J. (2021). Localized modes and dark solitons sustained by nonlinear defects. Optics Letters, 46(9), 2216-2219. doi:10.1364/ol.424389
    61. Ma, P., Li, J., Zhang, H., & Yang, Z. (2020). Preparation of high-damage threshold WS2 modulator and its application for generating high-power large-energy bright-dark solitons. Infrared Physics & Technology, 105, 103257. doi:10.1016/j.infrared.2020.103257
    62. Reham, M. S., Mohamed, E. A., Anjan, B., Yakup, Y., Houria, T., Luminita, M., Catalina, I., Lucian, G.P. & Asim, A. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3), 248-261. doi:10.3116/16091833/24/3/248/2023
    63. Arnous Ahmed, H., Anjan, B., Yakup, Y., Luminita, M., Catalina, I., Lucian, G. P., & Asim, A. (2023). Optical solitons and complexitons for the concatenation model in birefringent fibers. Ukrainian Journal of Physical Optics, 24(4), 04060-04086. doi:10.3116/16091833/24/4/04060/2023
    64. Jawad, A., & Abu-AlShaeer, M. (2023). Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Al-Rafidain Journal of Engineering Sciences, 1-8. doi:10.1016/j.rinp.2020.103021
    65. Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398. doi:10.1007/s12596-022-00963-4
    66. Han, T., Li, Z., Li, C., & Zhao, L. (2023). Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media. Journal of Optics, 52(2), 831-844. doi:10.1007/s12596-022-01041-5
    67. Rajan, M. M., Mahalingam, A., & Uthayakumar, A. (2014). Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation. Annals of Physics, 346, 1-13. doi:10.1016/j.aop.2014.03.012
    68. Zayed, E. M., & Abdelaziz, M. A. M. (2011). Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine–cosine and the exp-function methods. Applied Mathematics and Computation, 218(5), 2259-2268. doi:10.1016/j.amc.2011.07.043
    69. Zayed, E. M. E., & Alurrfi, K. A. E. (2016). Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Applied Mathematics and Computation, 289, 111-131. doi:10.1016/j.amc.2016.04.014
    70. Lan-Fang, S., Cai Sheng, C., and Xai –Chun, Z. (2011). The extend auxiliary equation method for the KdV equation with variable coefficient. Chinese Physics B, 20(10), 100507. doi:10.1088/1674-1056/20/10/100507
    71. Kumar, S., Kumar, A., & Wazwaz, A. M. (2020). New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. The European Physical Journal Plus, 135(11), 1-17. doi:10.1140/epjp/s13360-020-00883-x
    72. Malik, S., Almusawa, H., Kumar, S., Wazwaz, A. M., & Osman, M. S. (2021). A (2+ 1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results in Physics, 23, 104043. doi:10.1016/j.rinp.2021.104043
    73. Ma, Y. L., Wazwaz, A. M., & Li, B. Q. (2021). New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dynamics, 104, 1581-1594. doi:10.1007/s11071-021-06357-8
    74. Akbar, M. A., Wazwaz, A. M., Mahmud, F., Baleanu, D., Roy, R., Barman, H. K., Mahmoud, W., Al Sharif, M.A., & Osman, M. S. (2022). Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results in Physics, 43, 106079. doi:10.1016/j.rinp.2022.106079

    У цій статті використовується метод розширеного допоміжного рівняння для отримання точних розв’язків нелінійних рівнянь Шредінгера зі змінним коефіцієнтом. У результаті отримані розв’язки ізольованих хвиль, розв’язки тригонометричних функцій, розв’язки раціональних функцій та розв’язки еліптичних функцій Якобі. Солітони однозначно існують за умови, що коефіцієнти хроматичної дисперсії інтегровні за Ріманом. Крім того, деякі з отриманих рішень представлені 3D і 2D графіками, щоб продемонструвати поведінку рішень. Результати показують, що метод розширеного допоміжного рівняння за допомогою комп’ютерної системи символьних обчислень є надійним та ефективним у знаходженні різних точних розв’язків нелінійних еволюційних рівнянь зі змінними коефіцієнтами в математичній фізиці.

    Ключові слова: Nonlinear Schrodinger equations with variable coefficient, extended auxiliary equation method, optical soliton, elliptic functions solutions

© Ukrainian Journal of Physical Optics ©