Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 4
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
STUDY ON INTERFERENCE BETWEEN TWO VEHICLE-MOUNTED 3D MECHANICAL ROTATING LIDAR BASED ON RAY-TRACING
Ming Ling, Xiaoli Wang, Hao Chan and Sha Xu
Author Information
*Ming Ling
, The School of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China,
Xiaoli Wang
, The School of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China,
Hao Chan
, The School of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China,
Sha Xu
, The School of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
*Corresponding author. Tel: +86 21 67791419, e-mail address: 02180010@sues.edu.cn
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 4 , pp. 04063 - 04081 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.04063
ABSTRACT
In this paper, we have studied the possible interference phenomena of vehicle-mounted 3D mechanical rotating LiDAR based on ray tracing and distinguished and defined the incident and scattered interference in detail according to the structure of the transmitting and receiving optical system of 3D LiDAR and the divergence characteristics of the pulsed beam. The geometric model of 3D LiDAR interference is proposed using the overlapping region of the intersection of the transmission paths of the individual pulsed beams emitted by the two 3D LiDARs on the target to simulate the interference. Theoretically, the interference risk between two LiDARs can be deduced from the relationship between the spatial position of the set of coincident intersection points of the two 3D LiDARs and their rotational differences. We designed an experiment with three progressive test cases to validate the proposed interference model and demonstrate the rationality and applicability of the theory in explaining and generalizing the 3D mechanical rotational LiDAR interference phenomenon.
Keywords:
LiDAR, ray-tracing, mutual interference, noise point, modeling analysis
UDC:
528.8.044
- Verghese, S. (2017, May). Self-driving cars and lidar. In CLEO: Applications and Technology (pp. AM3A-1). Optica Publishing Group.
- Li, Y., & Ibanez-Guzman, J. (2020). Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4), 50-61.
doi:10.1109/msp.2020.2973615 - Hecht, J. (2018). Lidar for self-driving cars. Optics and Photonics News, 29(1), 26-33.
doi:10.1364/opn.29.1.000026 - Diehm, A. L., Hammer, M., Hebel, M., & Arens, M. (2018, October). Mitigation of crosstalk effects in multi-LiDAR configurations. In Electro-Optical Remote Sensing XII (Vol. 10796, pp. 13-24). SPIE.
doi:10.1117/12.2324305 - Hwang, I. P., Yun, S. J., & Lee, C. H. (2019, October). Study on the frequency-modulated continuous-wave LiDAR mutual interference. In 2019 IEEE 19th International Conference on Communication Technology (ICCT) (pp. 1053-1056). IEEE.
doi:10.1109/icct46805.2019.8947067 - Hwang, I. P., & Lee, C. H. (2020). Mutual interferences of a true-random LiDAR with other LiDAR signals. IEEE Access, 8, 124123-124133.
doi:10.1109/access.2020.3004891 - Kim, G., Eom, J., & Park, Y. (2015, June). Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners. In 2015 IEEE Intelligent Vehicles Symposium (IV) (pp. 437-442). IEEE.
doi:10.1109/ivs.2015.7225724 - Kim, G., Eom, J., Park, S., & Park, Y. (2015, May). Occurrence and characteristics of mutual interference between LIDAR scanners. In Photon Counting Applications 2015 (Vol. 9504, pp. 76-84). SPIE.
doi:10.1117/12.2178502 - Popko, G. B., Gaylord, T. K., & Valenta, C. R. (2020). Geometric approximation model of inter-lidar interference. Optical Engineering, 59(3), 033104-033104.
doi:10.1117/1.oe.59.3.033104 - Eom, J., Kim, G., & Park, Y. (2019, May). Mutual interference potential and impact of scanning lidar according to the relevant vehicle applications. In Laser Radar Technology and Applications XXIV (Vol. 11005, pp. 133-142). SPIE.
doi:10.1117/12.2518643 - Farnsworth, M. (2017, November, 30). What it was like to ride in GM's new self-driving Cruise car. Vox. https://www.vox.com/2017/11/29/16712572/general-motors-gm-new-self-driving-autonomous-cruise-car-future.
- Petit, J., Stottelaar, B., Feiri, M., & Kargl, F. (2015). Remote attacks on automated vehicles sensors: Experiments on camera and lidar. Black Hat Europe, 11(2015), 995.
- Shin, H., Kim, D., Kwon, Y., & Kim, Y. (2017). Illusion and dazzle: Adversarial optical channel exploits against lidars for automotive applications. In Cryptographic Hardware and Embedded Systems–CHES 2017: 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings (pp. 445-467). Springer International Publishing.
doi:10.1007/978-3-319-66787-4_22 - Sanders, F. H. (2006). Effects of RF interference on radar receivers. Institute for Telecommunication Sciences.
- Popko, G. B., Gaylord, T. K., & Valenta, C. R. (2020). Interference measurements between single-beam, mechanical scanning, time-of-flight lidars. Optical Engineering, 59(5), 053106-053106.
doi:10.1117/1.oe.59.5.053106
-
У цій статті, використовуючи метод трасування променів, ми досліджували можливі явища завад 3D механічного обертового лідара, встановленого на транспортному засобі. Ми визначали падаючу та розсіяну завади відповідно до структури оптичної системи передачі та прийому 3D лідара та характеристик розбіжності імпульсного променя. Геометрична модель завад 3D лідара була запропонована на основі перетину шляхів передачі окремих імпульсних променів, випромінюваних двома 3D лідарами на ціль для симуляції завад. Теоретичний ризик завад між двома лідарами можна отримати з співвідношення між просторовим положенням набору збіжних точок перетину двох 3D лідарів та відмінностями в куті обертання між ними. Ми розробили експеримент з трьома прогресивними тестовими випадками для перевірки запропонованої моделі завад, щоб продемонструвати раціональність і застосовність теорії в поясненні та узагальненні прояву завад 3D механічного обертового лідара.
Ключові слова: лідар, трасування променів, взаємні завади, шумова точка, аналіз моделювання
© Ukrainian Journal of Physical Optics ©