Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 3


ISSN 1609-1833 (Print)

BIFURCATION ANALYSIS AND OPTICAL SOLITONS FOR THE DISPERSIVE CONCATENATION MODEL

1Lu Tang, 2,3Yakup Yildirim, 4Anwar Jaafar Mohamad Jawad, 5,6,7,8Anjan Biswas and 6Ali Saleh Alshomrani

1School of Mathematics and Physics, Chengdu University of Technology, Chengdu-610059, China
2Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
3Department of Mathematics, Near East University, 99138 Nicosia, Cyprus
4Department of Computer Technical Engineering, Al Rafidain University College, 10064 Baghdad, Iraq
5Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
66Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
7Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, University of Galati, 111 Domneasca Street, Galati-800201, Romania
8Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa

ABSTRACT

This work carries out the bifurcation analysis of the dispersive concatenation model with Kerr law of self-phase modulation. The dynamical system is first formulated and the phase-plane portraits are analyzed. The corresponding soliton solutins are subsequently recovered from the analysis.

Keywords: bifurcation analysis, optical solitons, dispersive concatenation model

UDC: 535.32

    1. Tang, L., Biswas, A., Yildirim, Y., & Alghamdi, A. A. (2023). Bifurcation analysis and optical solitons for the concatenation model. Physics Letters A, 480, 128943. doi:10.1016/j.physleta.2023.128943
    2. Tang, L. (2022). Bifurcations and dispersive optical solitons for cubic-quartic nonlinear Lakshmanan-Porsezian-Daniel equation in polarization-preserving fibers. Optik , 270 , 170000. doi:10.1016/j.ijleo.2022.170000
    3. Li, J.B., Dai, H.H. (2007). On the study of singular nonlinear traveling wave equations: dynamical system approach. Science Press. doi:10.1142/S0218127407019858
    4. Li, J.B. (2013). Singular nonlinear traveling wave equations: bifurcation and exact solutions. Science Press.
    5. Tang, L. (2022). Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos, Solitons & Fractals, 161, 112383. doi:10.1016/j.chaos.2022.112383
    6. Tang, L. (2022). Bifurcations and dispersive optical solitons for nonlinear Schrödinger-Hirota equation в DWDM networks. Optik , 262 , 169276. doi:10.1016/j.ijleo.2022.169276
    7. Tang, L. (2023). Bifurcation studies, chaotic pattern, фаза діаграми і множинні оптичні solitons для (2+ 1)-dimensional stochastic coupled nonlinear Schrödinger система з multiplicative white noise via Itô calculus. Results in Physics , 52 , 106765. doi:10.1016/j.rinp.2023.106765
    8. Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361. doi:10.1016/j.physleta.2013.11.031
    9. Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907. doi:10.1103/PhysRevE.89.012907
    10. Belyaeva, TL, & Serkin, VN (2012). Wave-particle duality of solitons and solitonic analog of the Ramsauer-Townsend effect. The European Physical Journal D , 66 , 1-9. doi:10.1140/epjd/e2012-30214-2
    11. N. A. Kudryashov, NA, Biswas, A., Borodina, AG, Yildirim, Y., & Alshehri, HM (2023). Painlevé analysis and optical solitons для зробленого моделі. Optik , 272 , 170255. doi:10.1016/j.ijleo.2022.170255
    12. Triki, H., Sun, Y., Zhou, Q., Biswas, A., Yildirim, Y., & Alshehri, HM (2022). Тварні кутові pulses and moving fronts in optical medium with high-order dispersive and nonlinear effects. Chaos, Solitons & Fractals , 164 , 112622. doi:10.1016/j.chaos.2022.112622
    13. Wang, M. Y. (2022). Optical solitons with perturbed complex Ginzburg-Landau equation in Kerr and cubic-quintic-septic nonlinearity. Results in Physics, 33, 105077. doi:10.1016/j.rinp.2021.105077
    14. Wazwaz, A. M., & Mehanna, M. (2021). Higher-order Sasa-Satsuma equation: Bright and dark optical solitons. Optik, 243, 167421. doi:10.1016/j.ijleo.2021.167421
    15. Yildirim, Y. (2021). Optical solitons with Biswas-Arshed equation by F-expansion method. Optik , 227 , 165788. doi:10.1016/j.ijleo.2020.165788
    16. Zhou, Q. (2022).Influence of parameters of optical fibers on optical soliton interactions. Chinese Physics Letters. 39(1), 010501. doi:10.1088/0256-307X/39/1/010501
    17. Jawad, A. J. M., & Abu-AlShaeer, M. J. (2023). Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci., 1(1), 1-8. doi:10.61268/sapgh524
    18. Jihad, N., & Abd Almuhsan, M. (2023). Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Al-Rafidain J. Eng. Sci., 1(1), 81-92. doi:10.61268/0dat0751
    19. Jawad, A., & Biswas, A. (2024). Solutions of resonant nonlinear Schrödinger's equation with exotic non-Kerr law nonlinearities. Al-Rafidain J. Eng. Sci., 2(1), 43-50. doi:10.61268/2bz73q95
    20. González-Gaxiola, O., Biswas, A., Yildirim, Y., & Alshehri, H. M. (2022). Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace-Adomian decomposition. Ukr. J. Phys. Opt., 23(2), 68-76.doi:10.3116/16091833/23/2/68/2022
    21. Tang, L., Biswas, A., Yildirim, Y., Aphane, M., & Alghamdi, A. A. (2024). Bifurcation analysis and optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation. Proceedings of the Estonian Academy of Sciences, 73(1). doi:10.3176/proc.2024.1.03
    22. Tang, L., Biswas, A., Yildirim, Y., & Asiri, A. (2023). Bifurcation Analysis and Chaotic Behavior of the Concatenation Model with Power-Law Nonlinearity. Contemporary Mathematics, 1014-1025. doi:10.37256/cm.4420233606
    23. Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas-Lenells equation. Journal of Optics, 52(4), 2214-2223. doi:10.1007/s12596-023-01097-x
    24. Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398. doi:10.1007/s12596-022-00963-4
    25. Tang, L. (2024). Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with β-derivative in optical fibers. Optical and Quantum Electronics, 56(2), 175. doi:10.1007/s11082-023-05761-1
    26. Tang, L. (2024). Optical solitons perturbation and traveling wave solutions in magneto-optic waveguides with the generalized stochastic Schrödinger-Hirota equation. Optical and Quantum Electronics, 56(5), 1-15. doi:10.1007/s11082-024-06669-0

    Анотація. У цій роботі проведено біфуркаційний аналіз дисперсійної моделі конкатенації з законом Керра фазової самомодуляції. Cпочатку формулюється динамічна система і аналізуються фазово-площинні портрети. Після цього з аналізу відновлюються відповідні розв'язки солітонів.

    Ключові слова: біфуркаціний аналіз, оптичні солітони, дисперсійна модель конкатенації


© Ukrainian Journal of Physical Optics ©