Ukrainian Journal of Physical Optics

2024 Volume 25, Issue 3

ISSN 1609-1833 (Print)


1Xueyao Yan, 1,2,*Dongfei Wang, 1Zhenzhen Li and 3,4Xiangqing Wang

1School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
2Nanchang Institute of Technology, Nanchang, Jiangxi Province, 330044, China
3School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang, 236037, China
4Henan Key Laboratory of Visible Light Communications, Zhengzhou, China
*Corresponding author: wdfchina


In work, a new method of optical microwave signal generation with frequency 18-tupling using three parallel polarization modulators (PolMs) was proposed, in which the PolM is integrated through a polarization beam splitter, two phase modulators, an electrical phase shifter, and a polarization beam coupler. To generate a frequency 18-tupling millimeter-wave (mm-wave) signal, the polarization controller must first be employed to bring out linearly polarized light. Next, the linearly polarized light is faded into three PolMs to be modulated by a radio frequency signal, which can achieve multi-frequency optical sidebands. Last, controlling a polarizer to cancel unwanted optical sidebands to obtain ±9th optical sidebands is used to generate an 18-tupling mm-wave signal. We have conducted detailed mathematical formula derivation and computer simulation for the scheme. The results show that the scheme can be experimentally realized and accurate enough with the performance of the signal: the optical sideband suppression ratio can reach 48.02 dB, and the radio frequency spurious suppression ratio can reach 42.25 dB, almost equal to the theoretical model.

Keywords: microwave signal, polarization modulator, optical sideband suppression ratio, radio frequency spurious suppression ratio

UDC: 535.8

    1. Wang, D., Zhang, Y., Yang, Z., Zhang, L., Wu, B., Yang, X., Yan,S. & Wang, X. (2024). A new filterless W-band millimeter wave signals generation scheme with frequency octupling based on cascaded Mach-Zehnder modulators.. Ukrainian Journal of Physical Optics, 25(1). doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.01085
    2. Wang, D., Li, Y., Yan, X., Ding, H., & Li, Z. (2023). A simple filter-less QPSK modulated vector millimeter-wave signal generation with frequency quadrupling only enabled by a DP-PolM. Optical and Quantum Electronics, 55(14), 1244. doi:10.1007/s11082-023-05533-x
    3. Zeb, K., Lu, Z. G., Liu, J. R., Rahim, M., Pakulski, G., Poole, P. J., Mao, Y.X., Song, C.Y. Barrios, P. Jiang, W.H. & Zhang, X. (2019, October). Photonic generation of spectrally pure millimeter-wave signals for 5G applications. In 2019 International Topical Meeting on Microwave Photonics (MWP) (pp. 1-4). IEEE. doi:10.1109/MWP.2019.8892197
    4. Gomes, N. J., Monteiro, P. P., & Gameiro, A. (2012). Next generation wireless communications using radio over fiber. John Wiley & Sons. doi:10.1002/9781118306017
    5. Li, X., Yu, J., Zhang, J., Xiao, J., Zhang, Z., Xu, Y., & Chen, L. (2015). QAM vector signal generation by optical carrier suppression and precoding techniques. IEEE Photonics Technology Letters, 27(18), 1977-1980. doi:10.1109/LPT.2015.2448517
    6. Davies, P. A., Foord, A. P., & Razavi, K. E. (1995). Millimeter-wave signal generation by optical filtering of frequency-modulated laser spectra. Electronics Letters, 31(20), 1754-1756. doi:10.1049/el:19951220
    7. Ray, S., Médard, M., & Zheng, L. (2011). Fiber aided wireless network architecture. IEEE Journal on selected areas in Communications, 29(6), 1284-1294. doi:10.1109/JSAC.2011.110615
    8. Rivera-Silva, V., Millan-Mejia, A. J., & Gutiérrez-Castrejón, R. (2012, September). Automatic classification of the frequency chirp in directly modulated lasers using cross-correlation. In 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (pp. 1-6). IEEE. doi:10.1109/ICEEE.2012.6421211
    9. Wen, Y. J., Liu, H. F., Novak, D., & Ogawa, Y. (2000). Millimeter-wave signal generation from a monolithic semiconductor laser via subharmonic optical injection. IEEE Photonics Technology Letters, 12(8), 1058-1060. doi:10.1109/68.868007
    10. Li, J., Ning, T., Pei, L., Qi, C., Zhou, Q., Hu, X., & Gao, S. (2010). 60 GHz millimeter-wave generator based on a frequency-quadrupling feed-forward modulation technique. Optics Letters, 35(21), 3619-3621. doi:10.1364/OL.35.003619
    11. Feng, X., Yang, P., He, L., Niu, F., Zhong, B., & Xu, H. (2016). Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications. IEEE Photonics Technology Letters, 28(12), 1360-1362. doi:10.1109/LPT.2016.2542839
    12. Jin, S., Duan, R., Xiao, L., Zhu, H., Li, D., & Wang, T. (2021, October). Based on Brillouin Scattering Photoelectric Research of Oscillator. In 2021 13th International Conference on Advanced Infocomm Technology (ICAIT) (pp. 16-19). IEEE. doi:10.1109/ICAIT52638.2021.9702047
    13. Zhang, K., Li, S., Xie, Z., & Zheng, Z. (2022). An all-optical Ka-band microwave long-distance dissemination system based on an optoelectronic oscillator. IEEE Photonics Journal, 14(4), 1-5. doi:10.1109/JPHOT.2022.3195935
    14. Liu, H., Yang, J., Sun, T., & Wang, J. (2022, December). Coupled optoelectronic oscillator and its application in 5G communication system. In Fifth International Conference on Mechatronics and Computer Technology Engineering (MCTE 2022) (Vol. 12500, pp. 125-130). SPIE. doi:10.1117/12.2660997
    15. Wang, D., Wang, X., Yang, X., Gao, F., Zhang, L., Yang, Z., & Wu, B. (2023). Photonic filter-free adjustable frequency sextupling scheme for V-band vector mm-wave signal generation based on a DP-MZM with precoding. Optics Communications, 545, 129633. doi:10.1016/j.optcom.2023.129633
    16. Prem, A., & Chakrapani, A. (2017). Optical millimeter wave generation using external modulation--a review. Advances in Natural and Applied Sciences, 11(1), 8-13.
    17. Dar, A. B., & Ahmad, F. (2022). Optical millimeter-wave generation techniques: An overview. Optik, 258, 168858. doi:10.1016/j.ijleo.2022.168858
    18. Lin, C. T., Shih, P. T., Chen, J., Xue, W. Q., Peng, P. C., & Chi, S. (2008). Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering. IEEE Photonics Technology Letters, 20(12), 1027-1029. doi:10.1109/LPT.2008.923739
    19. Zhang, Y., & Pan, S. (2012, September). Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator. In 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (pp. 1-4). IEEE. doi:10.1109/IMWS2.2012.6338202
    20. Shang, L., Wen, A., Li, B., Wang, T., & Chen, Y. (2012). A filterless optical millimeter-wave generation based on frequency octupling. Optik, 123(13), 1183-1186. doi:10.1016/j.ijleo.2011.07.047
    21. Wang, D., Tang, X., Fan, Y., Zhang, X., Xi, L., & Zhang, W. (2018, November). A new approach to generate the optical millimeter-wave signals using frequency 12-tupling without an optical filter. In Tenth International Conference on Information Optics and Photonics (Vol. 10964, pp. 280-284). SPIE. doi:10.1117/12.2505184
    22. Chen, X., Liu, Z., Jiang, C., & Huang, D. (2013, November). A filterless optical millimeter-wave generation based on frequency 16-tupling. In Asia Communications and Photonics Conference (pp. AF3B-4). Optica Publishing Group. doi:10.1364/ACPC.2013.AF3B.4
    23. Rani, A., & Kedia, D. (2023). An 18-tupled photonic millimeter-wave generation using cascaded Mach-Zehnder modulators. Fiber and Integrated Optics, 42(1), 1-19. doi:10.1080/01468030.2022.2163520
    24. Zhu, Z., Zhao, S., Li, X., Huang, A. Q., Qu, K., & Lin, T. (2016). Photonic generation of frequency-octupled and frequency-quadrupled microwave signals using a dual-parallel polarization modulator. Optical and Quantum Electronics, 48, 1-12. doi:10.1007/s11082-016-0671-2
    25. Abouelez, A. E. (2020). Optical millimeter-wave generation via frequency octupling circuit based on two parallel dual-parallel polarization modulators. Optical and Quantum Electronics, 52(10), 439. doi:10.1007/s11082-020-02556-6
    26. Esakki Muthu, K., & Sivanantha Raja, A. (2018). Millimeter wave generation through frequency 12-tupling using DP-polarization modulators. Optical and Quantum Electronics, 50(5), 227. doi:10.1007/s11082-018-1488-y
    27. Gayathri, S., & Baskaran, M. (2019, March). Frequency 16 tupling technique with the use of four parallel polarization modulators. In 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) (pp. 282-286). IEEE. doi:10.1109/WiSPNET45539.2019.9032798
    28. Baskaran, M., Prabakaran, R., & Gayathri, T. S. (2019). Photonic generation of frequency 16-tupling millimeter wave signal using polarization property without an optical filter. Optik, 184, 348-355. doi:10.1016/j.ijleo.2019.04.077
    29. Rani, A., & Kedia, D. (2023). An 18-tupled photonic millimeter-wave generation using cascaded Mach-Zehnder modulators. Fiber and Integrated Optics, 42(1), 1-19. doi:10.1080/01468030.2022.2163520
    30. Zhou, H., Fei, C., Zeng, Y., Tan, Y., & Chen, M. (2021). A ROF system based on 18-tuple frequency millimeter wave generation using external modulator and SOA. Optical Fiber Technology, 61, 102402. doi:10.1016/j.yofte.2020.102402

    У роботі запропоновано новий метод генерації оптичного мікрохвильового сигналу з 18-кратною частотою з використанням трьох паралельних поляризаційних модуляторів (PolM), в якому PolM об’єднаний через поляризаційний розгалужувач променя, два фазові модулятори, електричний фазозсувач і поляризаційний об’єднувач променя. Для генерації сигналу міліметрового діапазону з 18-ти кратним помноженням необхідно задіяти контролер поляризації. Далі лінійно поляризоване світло перетворюється на три промені, які модулюються PolM радіочастотним сигналом, що дозволяє отримати багаточастотні оптичні бічні смуги. Нарешті, керування поляризатором для усунення небажаних оптичних бічних смуг для отримання ±9 оптичних бічних смуг використовується для генерації 18-кратного сигналу мм-хвиль. Нами отримані математичні співвідношення та здійснене комп’ютерне моделювання цієї схеми. Результати показують, що схема може бути експериментально реалізованою з досить точними характеристиками сигналу: коефіцієнт придушення оптичної бічної смуги може досягати 48,02 дБ, а коефіцієнт придушення паразитних частот може досягати 42,25 дБ, що відповідає теоретичній моделі.

    Ключові слова: мікрохвильовий сигнал, поляризаційний модулятор, коефіцієнт придушення оптичної бічної смуги, коефіцієнт придушення паразитних частот

© Ukrainian Journal of Physical Optics ©