Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 2


ISSN 1609-1833 (Print)

Chirped cosh-Gaussian Optical Pulses with Kudryashov's Form of Self-Phase Modulation by Variational Principle

1,2Regis Donald Hontinfinde, 3,4Marc Amour Ayela, 3Gaston Edah, 5Anwar Ja'afar Mohamad Jawad, 6,7,8,9Anjan Biswas, 10,11Yakup Yildirim, 9Maggie Aphane, and 7Ali Saleh Alshomrani

1Laboratory of Science, Engineering and Mathematics (LSEMA), National University of Science, Technology, Engineering and Mathematics (UNSTEM), Abomey, Republic of Benin
2Photonics and Digital Broadcasting Research Unit (UR-PHORAN), University of Abomey Calavi, Polytechnic School of Abomey Calavi (EPAC-UAC), Abomey Calavi, Republic of Benin
3Faculty of Science and Technology (FAST), University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
4Laplace, Universite de Toulouse, Toulouse-INP, UPS, Toulouse, France
5Department of Computer Technical Engineering, Al Rafidain University College, 10064 Baghdad, Iraq
6Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
7Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications; Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
8Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics, and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
9Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa
10Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
11Department of Mathematics, Near East University, 99138 Nicosia, Cyprus

ABSTRACT

This research work brings forth the understanding of optical cosh-Gaussian dynamics by incorporating the newly formulated Kudryashov equation. The method used is Anderson’s variational approach. We show that an appropriate choice of the trial wavefunction allows highlighting several varieties of stable and unstable solutions corresponding to non-dissipative or dissipative spatiotemporal solitons, propagating without deformation and with deformation.

Keywords: solitons, Kudryashov equation, variational approach

UDC: 535.32

    1. Murad, M. A. S. (2023). New optical soliton solutions for time-fractional Kudryashov's equation in optical fiber. Optik, 283, 170897. doi:10.1016/j.ijleo.2023.170897
    2. Edah, G., Goudjo, A., Adetola, J., & Ayela, M. A. (2021). A Numerical Method for Pulse Propagation in Nonlinear Dispersive Optical Media. Physical Science International Journal, 25(9), 12-22. doi:10.9734/psij/2021/v25i930280
    3. Samir, I., Ahmed, H. M., Darwish, A., & Hussein, H. H. (2024). Dynamical behaviors of solitons for NLSE with Kudryashov's sextic power-law of nonlinear refractive index using improved modified extended tanh-function method. Ain Shams Engineering Journal, 15(1), 102267. doi:10.1016/j.asej.2023.102267
    4. Zayed, E. M., El-Horbaty, M., Alngar, M. E., Shohib, R. M., Biswas, A., Yıldırım, Y., Moraru,L., Iticescu, C., Bibicu, D., Georgescu, P.L., & Asiri, A. (2023). Dynamical system of optical soliton parameters by variational principle (super-Gaussian and super-sech pulses). Journal of the European Optical Society-Rapid Publications, 19(2), 38. doi:10.1051/jeos/2023035
    5. Ayela, A. M., Edah, G., Biswas, A., Zhou, Q., Yildirim, Y., Khan, S., Alzahrani, A.K. & Belic, M. R. (2022). Dynamical system of optical soliton parameters for anti-cubic and generalized anti-cubic nonlinearities with super-Gaussian and super-sech pulses. Optica Applicata, 52(1). doi:10.37190/oa220109
    6. Kamagate, A., Grelu, P., & Tchofo-Dinda, P. Solitons dissipatifs de l'équation de Ginzburg-Landau Complexe (CGLE)a (3+ 1) D: balles de lumiere et pulsations. Résumés des exposés de la 11e Rencontre du Non-Linéaire Paris 2008, 22.
    7. Chen, Y. (1991). Variational principle for vector spatial solitons and nonlinear modes. Optics Communications, 84(5-6), 355-358. doi:10.1016/0030-4018(91)90102-J
    8. Ferreira, M. F. (2018). Variational approach to stationary and pulsating dissipative optical solitons. IET Optoelectronics, 12(3), 122-125. doi:10.1049/iet-opt.2017.0121
    9. Malomed, B. A. (2022). New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations. Physics Letters A, 422, 127802. doi:10.1016/j.physleta.2021.127802
    10. He, S., Malomed, B. A., Mihalache, D., Peng, X., He, Y., & Deng, D. (2021). Propagation dynamics of radially polarized symmetric Airy beams in the fractional Schrödinger equation. Physics Letters A, 404, 127403. doi:10.1016/j.physleta.2021.127403
    11. Qiu, Y., Malomed, B. A., Mihalache, D., Zhu, X., Peng, J., & He, Y. (2019). Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity. Physics Letters A, 383(22), 2579-2583. doi:10.1016/j.physleta.2019.05.022

    Ця робота відкриває розуміння оптичної динаміки cosh-Гаусса шляхом розв’язування нещодавно сформульованого рівняння Кудряшова. Використовується метод варіаційного підходу Андерсона. Показано, що відповідний вибір пробної хвильової функції дозволяє виділити декілька різновидів стійких і нестійких розв’язків, що відповідають недисипативним або дисипативним просторово-часовим солітонам, які поширюються без деформації та з деформацією.

    Ключові слова: солітони, рівняння Кудряшова, варіаційний підхід


© Ukrainian Journal of Physical Optics ©