Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 1


ISSN 1609-1833 (Print)

OPTICAL SOLITONS FOR THE CONCATENATION MODEL WITH DIFFERENTIAL GROUP DELAY HAVING MULTIPLICATE WHITE NOISE

Ahmed H. Arnous1, Anjan Biswas2,3,4,5, Yakup Yildirim6,7, Anwar Jaafar Mohamad Jawad8, Luminita Moraru9, Simona Moldovanu10, Carmelia Mariana Balanica Dragomir4 and Ali Saleh Alshomrani3

1Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El-Shorouk Academy, Cairo, Egypt
2Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa
6Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
7Department of Mathematics, Near East University, 99138 Nicosia, Cyprus
8Department of Computer Technical Engineering, Al-Rafidain University College, 10064 Baghdad, Iraq
9Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
10Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania

ABSTRACT

This work recovers optical soliton solutions to the concatenation model with differential group delay in the presence of white noise along both the components. Two integration algorithms have successfully recovered a full spectrum of solitons solutions to the model. It has been proved that the effect of white noise is visible only in the phase portion of the solitons along both components.

Keywords: Wiener process, Kudryashov method, concatenation model, birefringence

UDC: 535.32

    1. Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361.
      doi:10.1016/j.physleta.2013.11.031
    2. Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907.
      doi:10.1103/physreve.89.012907
    3. Arnous, A. H., Biswas, A., Kara, A. H., Yıldırım, Y., Moraru, L., Iticescu, C., Moldovanu, S. & Alghamdi, A. A. (2023). Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation). Journal of the European Optical Society-Rapid Publications, 19(2), 35.
      doi:10.1051/jeos/2023031
    4. Anjan, B., Yakup, Y., Luminita, M., Catalina, I., Lucian, G. P., & Asim, A. (2023). Optical solitons and complexitons for the concatenation model in birefringent fibers. Ukrainian Journal of Physical Optics, 24(4), 04060–04086.
      doi:10.3116/16091833/24/4/04060/2023
    5. Arnous, A. H., Biswas, A., Kara, A. H., Yıldırım, Y., Moraru, L., Iticescu, C., Moldovanu, S. & Alghamdi, A. A. (2024). Optical solitons and conservation laws for the concatenation model: power–law nonlinearity. Ain Shams Engineering Journal, 15(2), 102381.
      doi:10.1016/j.asej.2023.102381
    6. Biswas, A., Vega-Guzman, J., Kara, A. H., Khan, S., Triki, H., González-Gaxiola, O., Moraru, L. & Georgescu, P. L. (2022). Optical solitons and conservation laws for the concatenation model: Undetermined coefficients and multipliers approach. Universe, 9(1), 15.
      doi:10.3390/universe9010015
    7. Biswas, A., Vega-Guzman, J., Yıldırım, Y., Moraru, L., Iticescu, C., & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with differential group delay: undetermined coefficients. Mathematics, 11(9), 2012.
      doi:10.3390/math11092012
    8. Biswas, A., Vega-Guzmán, J. M., Yildirim, Y., Moshokoa, S. P., Aphane, M., & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukrainian Journal of Physical Optics, 24(3), 185–192.
      doi:10.3116/16091833/24/3/185/2023
    9. González-Gaxiola, O., Biswas, A., Ruiz de Chavez, J., & Asiri, A. (2023). Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme. Ukrainian Journal of Physical Optics, 24(3), 222–234.
      doi:10.3116/16091833/24/3/222/2023
    10. R. Shohib, M. E. M. Alngar, A. Biswas, Y. Yildirim, H. Triki, L. Moraru, C. Iticescu, P. L. Georgescu & A. Asiri. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3), 248–261.
      doi:10.3116/16091833/24/3/248/2023
    11. Jawad, A. J. M., & Abu-AlShaeer, M. J. (2023). Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci., 1(1), 1-8.
      doi:10.61268/sapgh524
    12. Wang, M. Y. (2022). Optical solitons with perturbed complex Ginzburg–Landau equation in Kerr and cubic–quintic–septic nonlinearity. Results in Physics, 33, 105077.
      doi:10.1016/j.rinp.2021.105077
    13. Zhong, Y., Triki, H., & Zhou, Q. (2023). Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential. Communications in Theoretical Physics, 75(2), 025003.
      doi:10.1088/1572-9494/aca51c
    14. Zhou, Q. (2022). Influence of parameters of optical fibers on optical soliton interactions. Chinese Physics Letters, 39(1), 010501.
      doi:10.1088/0256-307x/39/1/010501
    15. Zhu, Y., Yang, J., Li, J., Hu, L., & Zhou, Q. (2022). Interaction properties of double-hump solitons in the dispersion decreasing fiber. Nonlinear Dynamics, 109(2), 1047-1052.
      doi:10.1007/s11071-022-07491-7
    16. Wang, S. (2023). Novel soliton solutions of CNLSEs with Hirota bilinear method. Journal of Optics, 1-6.
      doi:10.1007/s12596-022-01065-x
    17. Kopçasız, B., & Yaşar, E. (2023). The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms. Journal of Optics, 52(3), 1513-1527.
      doi:10.1007/s12596-022-00998-7
    18. Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398.
      doi:10.1007/s12596-022-00963-4
    19. Thi, T. N., & Van, L. C. (2023). Supercontinuum generation based on suspended core fiber infiltrated with butanol. Journal of Optics, 52(4), 2296-2305.
      doi:10.1007/s12596-023-01323-6
    20. Li, Z., & Zhu, E. (2023). Optical soliton solutions of stochastic Schrödinger–Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. Journal of Optics, 1-7.
      doi:10.1007/s12596-023-01287-7
    21. Han, T., Li, Z., Li, C., & Zhao, L. (2023). Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media. Journal of Optics, 52(2), 831-844.
      doi:10.1007/s12596-022-01041-5
    22. Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation. Journal of Optics, 1-10.
      doi:10.1007/s12596-023-01097-x
    23. Nandy, S., & Lakshminarayanan, V. (2015). Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. Journal of Optics, 44, 397-404.
      doi:10.1007/s12596-015-0270-9
    24. Chen, W., Shen, M., Kong, Q., & Wang, Q. (2015). The interaction of dark solitons with competing nonlocal cubic nonlinearities. Journal of Optics, 44, 271-280.
      doi:10.1007/s12596-015-0255-8
    25. Xu, S. L., Petrović, N., & Belić, M. R. (2015). Two-dimensional dark solitons in diffusive nonlocal nonlinear media. Journal of Optics, 44, 172-177.
      doi:10.1007/s12596-015-0243-z
    26. Wazwaz, A. M. (2023). Painlevé integrability and lump solutions for two extended (3+ 1)-and (2+ 1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dynamics, 111(4), 3623-3632.
      doi:10.1007/s11071-022-08074-2
    27. Wazwaz, A. M. (2022). Integrable (3+ 1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dynamics, 109(3), 1929-1934.
      doi:10.1007/s11071-022-07517-0
    28. Wazwaz, A. M. (2022). Multi-soliton solutions for integrable (3+ 1)-dimensional modified seventh-order Ito and seventh-order Ito equations. Nonlinear Dynamics, 110(4), 3713-3720.
      doi:10.1007/s11071-022-07818-4
    29. Ma, Y. L., Wazwaz, A. M., & Li, B. Q. (2021). New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dynamics, 104, 1581-1594.
      doi:10.1007/s11071-021-06357-8
    30. Wazwaz, A. M., & Kaur, L. (2019). New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dynamics, 97, 83-94.
      doi:10.1007/s11071-019-04955-1
    31. Xu, G. Q., & Wazwaz, A. M. (2020). Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dynamics, 101(1), 581-595.
      doi:10.1007/s11071-020-05740-1
    32. Wazwaz, A. M., & Xu, G. Q. (2020). Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dynamics, 100, 3711-3716.
      doi:10.1007/s11071-020-05708-1

    У цій роботі отримуються розв'язки оптичних солітонів в моделі конкатенації з диференціальною груповою затримкою, за умови наявності білого шуму в обох компонентах. Повний спектр розв'язків солітонів для цієї моделі отримано за допомогою двох алгоритмів інтегрування. Було показано, що вплив білого шуму спостерігається лише у фазі солітонів в обох компонентах.

    Ключові слова: вінерівський процес, метод Кудряшова, конкатенаційна модель, подвійне променезаломлення


© Ukrainian Journal of Physical Optics ©