Ukrainian Journal of Physical Optics

Special Series “Nanomaterials and Optoelectronics”

2023 Volume 24, Issue 5

ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Nanomaterials for optoelectronics: an editor's overview

1,2Golovynskyi S.

1College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, P. R. China,
2Institute of Semiconductor Physics, National Academy of Sciences, 03028 Kyiv, Ukraine


Optoelectronics focuses on light-emitting and light-detecting devices and investigation of the materials used for their fabrication. Usually, the light-emitting devices are lamps, LEDs, laser diodes and gain-medium lasers, while the light-detecting devices are represented by photodiodes, photovoltaic solar cells, photoresistors, phototransistors, etc. The above field also covers the studies of emission of materials under different stimuli and interaction of light with different types of materials, mostly semiconductors and metal nanostructures. A technological progress in the materials science has instigated development of nanomaterials and optoelectronic devices on their basis. They can be divided into two-dimensional (2D) quantum wells, films or sheets, 1D nanowires and 0D quantum dots. 2D graphene-like layered materials, quantum dots and metal nanoparticles for optoelectronic applications are the most investigated. As a matter of fact, a global scientific trend associated with the nanomaterials is currently transforming our technologies and industry and represents the most ambitious course of the present and future optoelectronics.

Keywords: nanomaterials, optoelectronics, quantum confinement, emission, photovoltaics, solar energy

UDC: 539.51+681.7

    1. Rabouw F T and de Mello Donega C, 2016. Excited-state dynamics in colloidal semiconductor nanocrystals. Top. Curr. Chem. 374: 58. doi:10.1007/s41061-016-0060-0
    2. Donegá C d M, 2011. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40: 1512-1546. doi:10.1039/C0CS00055H
    3. Holonyak N, Kolbas R, Dupuis R and Dapkus P, 1980. Quantum-well heterostructure lasers. IEEE J. Quant. Electron. 16: 170-186. doi:10.1109/JQE.1980.1070447
    4. Krispin P, Lazzari J L and Kostial H, 1998. Deep and shallow electronic states at ultrathin InAs insertions in GaAs investigated by capacitance spectroscopy. J. Appl. Phys. 84: 6135-6140. doi:10.1063/1.368927
    5. Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E and Imamoglu A, 2000. A quantum dot single-photon turnstile device. Science. 290: 2282-2285. doi:10.1126/science.290.5500.2282
    6. Semenova E S, Zhukov A E, Mikhrin S S, Egorov A Y, Odnoblyudov V A, Vasil'ev A P, Nikitina E V, Kovsh A R, Kryzhanovskaya N V, Gladyshev A G, Blokhin S A, Musikhin Y G, Maximov M V, Shernyakov Y M, Ustinov V M and Ledentsov N N, 2004. Metamorphic growth for application in long-wavelength (1.3-1.55 μm) lasers and MODFET-type structures on GaAs substrates. Nanotechnology. 15: S283-S287. doi:10.1088/0957-4484/15/4/031
    7. Golovynskyi S, Datsenko O, Seravalli L, Trevisi G, Frigeri P, Gombia E, Babichuk I S, Lin D, Li B and Qu J, 2020. Near-infrared lateral photoresponse in InGaAs/GaAs quantum dots. Semicond. Sci. Technol. 35: 055029. doi:10.1088/1361-6641/ab7774
    8. Seravalli L, 2023. Metamorphic InAs/InGaAs quantum dots for optoelectronic devices: a review. Microelectron. Eng. 276: 111996. doi:10.1016/j.mee.2023.111996
    9. Lee S J, Ku Z, Barve A, Montoya J, Jang W-Y, Brueck S R J, Sundaram M, Reisinger A, Krishna S and Noh S K, 2011. A monolithically integrated plasmonic infrared quantum dot camera. Nature Commun. 2: 286. doi:10.1038/ncomms1283
    10. Mukherjee S, Maiti R, Katiyar A K, Das S and Ray S K, 2016. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices. Sci. Rep. 6: 29016. doi:10.1038/srep29016
    11. Babichuk I S, Semenenko M O, Golovynskyi S, Caballero R, Datsenko O I, Babichuk I V, Li J, Xu G, Qiu R, Huang C, Hu R, Golovynska I, Ganus V, Li B, Qu J and Leon M, 2019. Control of secondary phases and disorder degree in Cu2ZnSnS4 films by sulfurization at varied subatmospheric pressures. Sol. Energy Mater. Sol. Cells. 200: 109915. doi:10.1016/j.solmat.2019.109915
    12. Liu Z, Lin C-H, Hyun B-R, Sher C-W, Lv Z, Luo B, Jiang F, Wu T, Ho C-H, Kuo H-C and He J-H, 2020. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9: 83. doi:10.1038/s41377-020-0268-1
    13. Kwoen J, Imoto T and Arakawa Y, 2021. InAs/InGaAs quantum dot lasers on multi-functional metamorphic buffer layers. Opt. Express. 29: 29378. doi:10.1364/OE.433030
    14. Zhao H and Rosei F, 2017. Colloidal quantum dots for solar technologies. Chem. 3: 229-258. doi:10.1016/j.chempr.2017.07.007
    15. Liu M, Yazdani N, Yarema M, Jansen M, Wood V and Sargent E H, 2021. Colloidal quantum dot electronics. Nat. Electron. 4: 548-558. doi:10.1038/s41928-021-00632-7
    16. Wood V and Bulović V, 2010. Colloidal quantum dot light-emitting devices. Nano Rev. 1: 5202. doi:10.3402/nano.v1i0.5202
    17. Han H-V, Lin C-C, Tsai Y-L, Chen H-C, Chen K-J, Yeh Y-L, Lin W-Y, Kuo H-C and Yu P, 2014. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization. Sci. Rep. 4: 5734. doi:10.1038/srep05734
    18. Zhao J, Chen L, Li D, Shi Z, Liu P, Yao Z, Yang H, Zou T, Zhao B, Zhang X, Zhou H, Yang Y, Cao W, Yan X, Zhang S and Sun X W, 2021. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Commun. 12: 4603. doi:10.1038/s41467-021-24931-x
    19. Hsu Y F, Xi Y Y, Djurišić A B and Chan W K, 2008. ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. Appl. Phys. Lett. 92: 133507. doi:10.1063/1.2906370
    20. Wen S, Liu Y, Wang F, Lin G, Zhou J, Shi B, Suh Y D and Jin D, 2020. Nanorods with multidimensional optical information beyond the diffraction limit. Nature Commun. 11: 6047. doi:10.1038/s41467-020-19952-x
    21. Wang J, Liu L, Chen S, Qi L, Zhao M, Zhao C, Tang J, Cai X, Lu F and Jiu T, 2021. Growth of 1D nanorod perovskite for surface passivation in FAPbI3 perovskite solar cells. Small. 18: 2104100. doi:10.1002/smll.202104100
    22. Laumier S, Farrow T, van Zalinge H, Seravalli L, Bosi M and Sandall I, 2022. Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega. 7: 35288-35296. doi:10.1021/acsomega.2c04775
    23. Huang G, Lv C, He J, Zhang X, Zhou C, Yang P, Tan Y, Huang H and Arenal R, 2020. Study on preparation and characterization of graphene based on ball milling method. J. Nanomater. 2020: 1-11. doi:10.1155/2020/2042316
    24. Karimi H, Yusof R, Rahmani R and Ahmadi M T, 2013. Optimization of DNA sensor model based nanostructured graphene using particle swarm optimization technique. J. Nanomater. 2013: 1-9. doi:10.1155/2013/789454
    25. Mak K F, Lee C, Hone J, Shan J and Heinz T F, 2010. Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105: 136805. doi:10.1103/PhysRevLett.105.136805
    26. Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour J M and Fang Z, 2015. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 27: 5235-40. doi:10.1002/adma.201501888
    27. Shu Y, Guo J, Fan T, Xu Y, Guo P, Wang Z, Wu L, Ge Y, Lin Z, Ma D, Wei S, Li J, Zhang H and Chen W, 2020. Two-dimensional black arsenic phosphorus for ultrafast photonics in near- and mid-infrared regimes ACS. Appl. Mater. Interfaces. 12: 46509-46518. doi:10.1021/acsami.0c12408
    28. Golovynskyi S, Datsenko O I, Dong D, Lin Y, Irfan I, Li B, Lin D and Qu J, 2021. Trion binding energy variation on photoluminescence excitation energy and power during direct to indirect bandgap crossover in monolayer and few-layer MoS2. J. Phys. Chem. C. 125: 17806-17819. doi:10.1021/acs.jpcc.1c04334
    29. Golovynskyi S, Dong D, Lin Y, Datsenko O I and Li B, 2021. Hexagram bi-layer MoS2 flake: the impact of polycrystallinity and strains on the exciton and trion photoluminescence. Surf. Interfaces. 26: 101343. doi:10.1016/j.surfin.2021.101343
    30. Usman M, Golovynskyi S, Dong D, Lin Y, Yue Z, Imran M, Li B, Wu H and Wang L, 2022. Raman scattering and exciton photoluminescence in few-layer GaSe: thickness- and temperature-dependent behaviors. J. Phys. Chem. C. 126: 10459-10468. doi:10.1021/acs.jpcc.2c02127
    31. Golovynskyi S, Datsenko O I, Usman M, Pérez-Jiménez A I, Chaigneau M, Bosi M, Seravalli L, Hidouri T, Golovynska I, Li B and Wu H, 2023. Free exciton and bound excitons on Pb and I vacancies and O and I substituting defects in PbI2: photoluminescence and DFT calculations. Appl. Surf. Sci. 624: 157128. doi:10.1016/j.apsusc.2023.157128
    32. Lai G-J, Lyu L-M, Huang Y-S, Lee G-C, Lu M-P, Perng T-P, Lu M-Y and Chen L-J, 2021. Few-layer WS2-MoS2 in-plane heterostructures for efficient photocatalytic hydrogen evolution. Nano Energy. 81: 105608. doi:10.1016/j.nanoen.2020.105608
    33. Irfan I, Golovynskyi S, Yeshchenko O A, Bosi M, Zhou T, Xue B, Li B, Qu J and Seravalli L, 2022. Plasmonic enhancement of exciton and trion photoluminescence in 2D MoS2 decorated with Au nanorods: Impact of nonspherical shape. Physica E. 140: 115213. doi:10.1016/j.physe.2022.115213
    34. Golovynskyi S, Bosi M, Seravalli L and Li B, 2021. MoS2 two-dimensional quantum dots with weak lateral quantum confinement: intense exciton and trion photoluminescence. Surf. Interfaces 23: 100909. doi:10.1016/j.surfin.2020.100909
    35. Park K H, Jung S, Kim J, Ko B-M, Shim W-G, Hong S-J and Song S H, 2021. Boosting photovoltaic performance in organic solar cells by manipulating the size of MoS2 quantum dots as a hole-transport material. Nanomaterials 11: 1464. doi:10.3390/nano11061464
    36. Golovynskyi S, Datsenko O I, Dong D, Lin Y, Golovynska I, Jin Z, Li B and Wu H, 2022. MoS2 monolayer quantum dots on a flake: Efficient sensitization of exciton and trion photoluminescence via resonant nonradiative energy and charge transfers. Appl. Surf. Sci. 601: 154209. doi:10.1016/j.apsusc.2022.154209
    37. Muskens O L, Giannini V, Sánchez-Gil J A and Gómez Rivas J, 2007. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7: 2871-2875. doi:10.1021/nl0715847
    38. Ziegler J, Djiango M, Vidal C, Hrelescu C and Klar T A, 2015. Gold nanostars for random lasing enhancement. Opt. Express. 23: 15152. doi:10.1364/OE.23.015152
    39. Li B and Lane L A, 2018. Probing the biological obstacles of nanomedicine with gold nanoparticles. WIREs Nanomedicine and Nanobiotechnology. 11: e1542. doi:10.1002/wnan.1542
    40. Lee K, Chen Y-H, Lin H-Y, Cheng C-C, Chen P-Y, Wu T-Y, Shih M H, Wei K-H, Li L and Chang C-W, 2015. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci. Rep. 5: 16374. doi:10.1038/srep16374
    41. Yeshchenko O A, Kudrya V Y, Tomchuk A V, Dmitruk I M, Berezovska N I, Teselko P O, Golovynskyi S, Xue B and Qu J, 2019. Plasmonic nanocavity metasurface based on laser-structured silver surface and silver nanoprisms for the enhancement of adenosine nucleotide photoluminescence. ACS Appl. Nano Mater. 2: 7152-7161. doi:10.1021/acsanm.9b01673
    42. Irfan I, Golovynskyi S, Bosi M, Seravalli L, Yeshchenko O A, Xue B, Dong D, Lin Y, Qiu R, Li B and Qu J, 2021. Enhancement of Raman scattering and exciton/trion photoluminescence of monolayer and few-layer MoS2 by Ag nanoprisms and nanoparticles: shape and size effects. J. Phys. Chem. C. 125: 4119-4132. doi:10.1021/acs.jpcc.0c11421
    43. Yaremchuk I, Pidluzhna A, Stakhira P, Kuntyi O, Sus L, Savaryn V, Stakhira P, Kostruba A, Fitio V and Bobitski Y, 2021. Surface-localized plasmon resonance in a system of randomly arranged gold nanorods on a dielectric substrate. Ukr. J. Phys. Opt. 22: 69-82. doi:10.3116/16091833/22/2/69/2021

    Оптоелектроніка зосереджена на світловипромінювальних і світло¬де¬текторних пристроях і дослідженні матеріалів, які використовуються для їх виготовлення. Зазвичай світловипромінювальними пристроями є лампи, світлодіоди, лазерні діоди та лазери із середовищем підсилення, тоді як світлодетекторними пристроями є фотодіоди, фотоелектричні сонячні елементи, фоторезистори, фототранзистори тощо. Вищезазначена сфера також охоплює дослідження випромінювання матеріалів під різним збудженням та взаємодію світла з різними типами матеріалів, переважно напівпровідниками та металевими наноструктурами. Технологічний прогрес у матеріалознавстві спонукав до розробки наноматеріалів та оптоелектронних пристроїв на їх основі. Їх можна розділити на двовимірні (2D) квантові ями, плівки або листи, 1D нанодроти та 0D квантові точки. 2D-графеноподібні шаруваті матеріали, квантові точки та металеві наночастинки для оптоелектронних застосувань є найбільш дослідженими. По суті, глобальна наукова тенденція, пов’язана з наноматеріалами, наразі трансформує наші технології та промисловість і представляє найбільш амбітний курс сучасної та майбутньої оптоелектроніки.

    Ключові слова: наноматеріали, оптоелектроніка, квантовий розмір, випромінювання, фотовольтаїка, сонячна енергія

© Ukrainian Journal of Physical Optics ©