Ukrainian Journal of Physical Optics
Special Series “Nanomaterials and Optoelectronics”
2023 Volume 24, Issue 5
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Nanomaterials for optoelectronics: an editor's overview
1,2Golovynskyi S.
1College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, P. R. China, serge@szu.edu.cn 2Institute of Semiconductor Physics, National Academy of Sciences, 03028 Kyiv, Ukraine
Ukr. J. Phys. Opt.
Vol. 24
,
Issue 5 , pp. S1 - S9 (2023).
doi:10.3116/16091833/24/5/S1/2023
ABSTRACT
Optoelectronics focuses on light-emitting and light-detecting devices and investigation of the materials used for their fabrication. Usually, the light-emitting devices are lamps, LEDs, laser diodes and gain-medium lasers, while the light-detecting devices are represented by photodiodes, photovoltaic solar cells, photoresistors, phototransistors, etc. The above field also covers the studies of emission of materials under different stimuli and interaction of light with different types of materials, mostly semiconductors and metal nanostructures. A technological progress in the materials science has instigated development of nanomaterials and optoelectronic devices on their basis. They can be divided into two-dimensional (2D) quantum wells, films or sheets, 1D nanowires and 0D quantum dots. 2D graphene-like layered materials, quantum dots and metal nanoparticles for optoelectronic applications are the most investigated. As a matter of fact, a global scientific trend associated with the nanomaterials is currently transforming our technologies and industry and represents the most ambitious course of the present and future optoelectronics.
Keywords:
nanomaterials, optoelectronics, quantum confinement, emission, photovoltaics, solar energy
UDC:
539.51+681.7
- Rabouw F T and de Mello Donega C, 2016. Excited-state dynamics in colloidal semiconductor nanocrystals. Top. Curr. Chem. 374: 58. doi:10.1007/s41061-016-0060-0
- Donegá C d M, 2011. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40: 1512-1546. doi:10.1039/C0CS00055H
- Holonyak N, Kolbas R, Dupuis R and Dapkus P, 1980. Quantum-well heterostructure lasers. IEEE J. Quant. Electron. 16: 170-186. doi:10.1109/JQE.1980.1070447
- Krispin P, Lazzari J L and Kostial H, 1998. Deep and shallow electronic states at ultrathin InAs insertions in GaAs investigated by capacitance spectroscopy. J. Appl. Phys. 84: 6135-6140. doi:10.1063/1.368927
- Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E and Imamoglu A, 2000. A quantum dot single-photon turnstile device. Science. 290: 2282-2285. doi:10.1126/science.290.5500.2282
- Semenova E S, Zhukov A E, Mikhrin S S, Egorov A Y, Odnoblyudov V A, Vasil'ev A P, Nikitina E V, Kovsh A R, Kryzhanovskaya N V, Gladyshev A G, Blokhin S A, Musikhin Y G, Maximov M V, Shernyakov Y M, Ustinov V M and Ledentsov N N, 2004. Metamorphic growth for application in long-wavelength (1.3-1.55 μm) lasers and MODFET-type structures on GaAs substrates. Nanotechnology. 15: S283-S287. doi:10.1088/0957-4484/15/4/031
- Golovynskyi S, Datsenko O, Seravalli L, Trevisi G, Frigeri P, Gombia E, Babichuk I S, Lin D, Li B and Qu J, 2020. Near-infrared lateral photoresponse in InGaAs/GaAs quantum dots. Semicond. Sci. Technol. 35: 055029. doi:10.1088/1361-6641/ab7774
- Seravalli L, 2023. Metamorphic InAs/InGaAs quantum dots for optoelectronic devices: a review. Microelectron. Eng. 276: 111996. doi:10.1016/j.mee.2023.111996
- Lee S J, Ku Z, Barve A, Montoya J, Jang W-Y, Brueck S R J, Sundaram M, Reisinger A, Krishna S and Noh S K, 2011. A monolithically integrated plasmonic infrared quantum dot camera. Nature Commun. 2: 286. doi:10.1038/ncomms1283
- Mukherjee S, Maiti R, Katiyar A K, Das S and Ray S K, 2016. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices. Sci. Rep. 6: 29016. doi:10.1038/srep29016
- Babichuk I S, Semenenko M O, Golovynskyi S, Caballero R, Datsenko O I, Babichuk I V, Li J, Xu G, Qiu R, Huang C, Hu R, Golovynska I, Ganus V, Li B, Qu J and Leon M, 2019. Control of secondary phases and disorder degree in Cu2ZnSnS4 films by sulfurization at varied subatmospheric pressures. Sol. Energy Mater. Sol. Cells. 200: 109915. doi:10.1016/j.solmat.2019.109915
- Liu Z, Lin C-H, Hyun B-R, Sher C-W, Lv Z, Luo B, Jiang F, Wu T, Ho C-H, Kuo H-C and He J-H, 2020. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9: 83. doi:10.1038/s41377-020-0268-1
- Kwoen J, Imoto T and Arakawa Y, 2021. InAs/InGaAs quantum dot lasers on multi-functional metamorphic buffer layers. Opt. Express. 29: 29378. doi:10.1364/OE.433030
- Zhao H and Rosei F, 2017. Colloidal quantum dots for solar technologies. Chem. 3: 229-258. doi:10.1016/j.chempr.2017.07.007
- Liu M, Yazdani N, Yarema M, Jansen M, Wood V and Sargent E H, 2021. Colloidal quantum dot electronics. Nat. Electron. 4: 548-558. doi:10.1038/s41928-021-00632-7
- Wood V and Bulović V, 2010. Colloidal quantum dot light-emitting devices. Nano Rev. 1: 5202. doi:10.3402/nano.v1i0.5202
- Han H-V, Lin C-C, Tsai Y-L, Chen H-C, Chen K-J, Yeh Y-L, Lin W-Y, Kuo H-C and Yu P, 2014. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization. Sci. Rep. 4: 5734. doi:10.1038/srep05734
- Zhao J, Chen L, Li D, Shi Z, Liu P, Yao Z, Yang H, Zou T, Zhao B, Zhang X, Zhou H, Yang Y, Cao W, Yan X, Zhang S and Sun X W, 2021. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Commun. 12: 4603. doi:10.1038/s41467-021-24931-x
- Hsu Y F, Xi Y Y, Djurišić A B and Chan W K, 2008. ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. Appl. Phys. Lett. 92: 133507. doi:10.1063/1.2906370
- Wen S, Liu Y, Wang F, Lin G, Zhou J, Shi B, Suh Y D and Jin D, 2020. Nanorods with multidimensional optical information beyond the diffraction limit. Nature Commun. 11: 6047. doi:10.1038/s41467-020-19952-x
- Wang J, Liu L, Chen S, Qi L, Zhao M, Zhao C, Tang J, Cai X, Lu F and Jiu T, 2021. Growth of 1D nanorod perovskite for surface passivation in FAPbI3 perovskite solar cells. Small. 18: 2104100. doi:10.1002/smll.202104100
- Laumier S, Farrow T, van Zalinge H, Seravalli L, Bosi M and Sandall I, 2022. Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega. 7: 35288-35296. doi:10.1021/acsomega.2c04775
- Huang G, Lv C, He J, Zhang X, Zhou C, Yang P, Tan Y, Huang H and Arenal R, 2020. Study on preparation and characterization of graphene based on ball milling method. J. Nanomater. 2020: 1-11. doi:10.1155/2020/2042316
- Karimi H, Yusof R, Rahmani R and Ahmadi M T, 2013. Optimization of DNA sensor model based nanostructured graphene using particle swarm optimization technique. J. Nanomater. 2013: 1-9. doi:10.1155/2013/789454
- Mak K F, Lee C, Hone J, Shan J and Heinz T F, 2010. Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105: 136805. doi:10.1103/PhysRevLett.105.136805
- Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour J M and Fang Z, 2015. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 27: 5235-40. doi:10.1002/adma.201501888
- Shu Y, Guo J, Fan T, Xu Y, Guo P, Wang Z, Wu L, Ge Y, Lin Z, Ma D, Wei S, Li J, Zhang H and Chen W, 2020. Two-dimensional black arsenic phosphorus for ultrafast photonics in near- and mid-infrared regimes ACS. Appl. Mater. Interfaces. 12: 46509-46518. doi:10.1021/acsami.0c12408
- Golovynskyi S, Datsenko O I, Dong D, Lin Y, Irfan I, Li B, Lin D and Qu J, 2021. Trion binding energy variation on photoluminescence excitation energy and power during direct to indirect bandgap crossover in monolayer and few-layer MoS2. J. Phys. Chem. C. 125: 17806-17819. doi:10.1021/acs.jpcc.1c04334
- Golovynskyi S, Dong D, Lin Y, Datsenko O I and Li B, 2021. Hexagram bi-layer MoS2 flake: the impact of polycrystallinity and strains on the exciton and trion photoluminescence. Surf. Interfaces. 26: 101343. doi:10.1016/j.surfin.2021.101343
- Usman M, Golovynskyi S, Dong D, Lin Y, Yue Z, Imran M, Li B, Wu H and Wang L, 2022. Raman scattering and exciton photoluminescence in few-layer GaSe: thickness- and temperature-dependent behaviors. J. Phys. Chem. C. 126: 10459-10468. doi:10.1021/acs.jpcc.2c02127
- Golovynskyi S, Datsenko O I, Usman M, Pérez-Jiménez A I, Chaigneau M, Bosi M, Seravalli L, Hidouri T, Golovynska I, Li B and Wu H, 2023. Free exciton and bound excitons on Pb and I vacancies and O and I substituting defects in PbI2: photoluminescence and DFT calculations. Appl. Surf. Sci. 624: 157128. doi:10.1016/j.apsusc.2023.157128
- Lai G-J, Lyu L-M, Huang Y-S, Lee G-C, Lu M-P, Perng T-P, Lu M-Y and Chen L-J, 2021. Few-layer WS2-MoS2 in-plane heterostructures for efficient photocatalytic hydrogen evolution. Nano Energy. 81: 105608. doi:10.1016/j.nanoen.2020.105608
- Irfan I, Golovynskyi S, Yeshchenko O A, Bosi M, Zhou T, Xue B, Li B, Qu J and Seravalli L, 2022. Plasmonic enhancement of exciton and trion photoluminescence in 2D MoS2 decorated with Au nanorods: Impact of nonspherical shape. Physica E. 140: 115213. doi:10.1016/j.physe.2022.115213
- Golovynskyi S, Bosi M, Seravalli L and Li B, 2021. MoS2 two-dimensional quantum dots with weak lateral quantum confinement: intense exciton and trion photoluminescence. Surf. Interfaces 23: 100909. doi:10.1016/j.surfin.2020.100909
- Park K H, Jung S, Kim J, Ko B-M, Shim W-G, Hong S-J and Song S H, 2021. Boosting photovoltaic performance in organic solar cells by manipulating the size of MoS2 quantum dots as a hole-transport material. Nanomaterials 11: 1464. doi:10.3390/nano11061464
- Golovynskyi S, Datsenko O I, Dong D, Lin Y, Golovynska I, Jin Z, Li B and Wu H, 2022. MoS2 monolayer quantum dots on a flake: Efficient sensitization of exciton and trion photoluminescence via resonant nonradiative energy and charge transfers. Appl. Surf. Sci. 601: 154209. doi:10.1016/j.apsusc.2022.154209
- Muskens O L, Giannini V, Sánchez-Gil J A and Gómez Rivas J, 2007. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7: 2871-2875. doi:10.1021/nl0715847
- Ziegler J, Djiango M, Vidal C, Hrelescu C and Klar T A, 2015. Gold nanostars for random lasing enhancement. Opt. Express. 23: 15152. doi:10.1364/OE.23.015152
- Li B and Lane L A, 2018. Probing the biological obstacles of nanomedicine with gold nanoparticles. WIREs Nanomedicine and Nanobiotechnology. 11: e1542. doi:10.1002/wnan.1542
- Lee K, Chen Y-H, Lin H-Y, Cheng C-C, Chen P-Y, Wu T-Y, Shih M H, Wei K-H, Li L and Chang C-W, 2015. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci. Rep. 5: 16374. doi:10.1038/srep16374
- Yeshchenko O A, Kudrya V Y, Tomchuk A V, Dmitruk I M, Berezovska N I, Teselko P O, Golovynskyi S, Xue B and Qu J, 2019. Plasmonic nanocavity metasurface based on laser-structured silver surface and silver nanoprisms for the enhancement of adenosine nucleotide photoluminescence. ACS Appl. Nano Mater. 2: 7152-7161. doi:10.1021/acsanm.9b01673
- Irfan I, Golovynskyi S, Bosi M, Seravalli L, Yeshchenko O A, Xue B, Dong D, Lin Y, Qiu R, Li B and Qu J, 2021. Enhancement of Raman scattering and exciton/trion photoluminescence of monolayer and few-layer MoS2 by Ag nanoprisms and nanoparticles: shape and size effects. J. Phys. Chem. C. 125: 4119-4132. doi:10.1021/acs.jpcc.0c11421
- Yaremchuk I, Pidluzhna A, Stakhira P, Kuntyi O, Sus L, Savaryn V, Stakhira P, Kostruba A, Fitio V and Bobitski Y, 2021. Surface-localized plasmon resonance in a system of randomly arranged gold nanorods on a dielectric substrate. Ukr. J. Phys. Opt. 22: 69-82. doi:10.3116/16091833/22/2/69/2021
-
Оптоелектроніка зосереджена на світловипромінювальних і світло¬де¬текторних пристроях і дослідженні матеріалів, які використовуються для їх виготовлення. Зазвичай світловипромінювальними пристроями є лампи, світлодіоди, лазерні діоди та лазери із середовищем підсилення, тоді як світлодетекторними пристроями є фотодіоди, фотоелектричні сонячні елементи, фоторезистори, фототранзистори тощо. Вищезазначена сфера також охоплює дослідження випромінювання матеріалів під різним збудженням та взаємодію світла з різними типами матеріалів, переважно напівпровідниками та металевими наноструктурами. Технологічний прогрес у матеріалознавстві спонукав до розробки наноматеріалів та оптоелектронних пристроїв на їх основі. Їх можна розділити на двовимірні (2D) квантові ями, плівки або листи, 1D нанодроти та 0D квантові точки. 2D-графеноподібні шаруваті матеріали, квантові точки та металеві наночастинки для оптоелектронних застосувань є найбільш дослідженими. По суті, глобальна наукова тенденція, пов’язана з наноматеріалами, наразі трансформує наші технології та промисловість і представляє найбільш амбітний курс сучасної та майбутньої оптоелектроніки.
Ключові слова: наноматеріали, оптоелектроніка, квантовий розмір, випромінювання, фотовольтаїка, сонячна енергія
© Ukrainian Journal of Physical Optics ©