Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Optical solitons in magneto-optic waveguides for the concatenation model

1Shohib Reham M. A., 2Alngar Mohamed E. M., 3,4,5,6Biswas Anjan, 7Yildirim Yakup, 8Triki Houria, 9Moraru Luminita, 9Iticescu Catalina, 9Georgescu Puiu Lucian and 4Asiri Asim

1Basic Science Department, Higher Institute of Foreign Trade & Management Sciences, New Cairo Academy, Cairo-379, Egypt
2Basic Science Department, Faculty of Computers and Artificial Intelligence, Modern University for Technology & Information, Cairo-11585, Egypt
3Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA.
4Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
5Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati800201, Romania
6Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa
7Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey
8Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria
9Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008, Romania

ABSTRACT

The current paper focuses on the retrieval of solitons in magneto–optic waveguides for the concatenation model having Kerr law of nonlinear refractive index. The simplest equation approach as well as the extended simplest equation method collectively reveal a full spectrum of soliton solutions to the model. The parameter constraints guarantee the existence of such solitons.

Keywords: solitons, concatenation model, magneto-optic waveguide, simplest equation method

UDC: 535.32

    1. Ankiewicz A & Akhmediev N, 2014. Higher-order integrable evolution equation and its soliton solutions. Phys.Lett. A. 378: 358-361. doi:10.1016/j.physleta.2013.11.031
    2. Ankiewicz A, Wang Y, Wabnitz S & Akhmediev N, 2014. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys.Rev. E. 89: 012907. doi:10.1103/PhysRevE.89.012907
    3. Arnous A. H., Biswas A., Kara A. H., Yildirim Y., Moraru L., Iticescu C., Moldovanu S. & Alghamdi A. A, 2023. Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (Internet traffic regulation). J.Europ.Opt.Soc.-Rap.Publ. 19 (2): 35. doi:10.1051/jeos/2023031
    4. Biswas A, Vega-Guzman J, Kara A H, Khan S, Triki H, Gonzalez-Gaxiola O, Moraru L & Georgescu P L, 2023. Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach. Universe. 9 (1): 15. doi:10.3390/universe9010015
    5. Biswas A, Vega-Guzman J, Yildirim Y, Moraru L, Iticescu C & Alghamdi A A, 2023. Optical solitons for the concatenation model with differential group delay: undetermined coefficients. Mathematics. 11 (9): 2012. doi:10.3390/math11092012
    6. Biswas A, Vega-Guzman J M, Yildirim Y, Moshokoa S P, Aphane M & Alghamdi A A, 2023. Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukr.J.Phys.Opt. 24 (3): 185-192. doi:10.3116/16091833/24/3/185/2023
    7. Kukkar A, Kumar S, Malik S, Biswas A, Yildirim Y, Moshokoa S P, Khan S & Alghamdi Abdulah A, 2023. Optical solitons for the concatenation model with Kudryashov's approaches. Ukr.J.Phys.Opt. 24 (2): 155-160. doi:10.3116/16091833/24/2/155/2023
    8. Tang L, Biswas A, Yildirim Y & Alghamdi A A, Bifurcation analysis and optical solitons for the concatenation model. Phys.Lett. A. (to be published).
    9. Triki H, Sun Y, Zhou Q, Biswas A, Yildirim Y & Alshehri H M, 2022. Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos Solit.Fractals 164: 112622. doi:10.1016/j.chaos.2022.112622
    10. Wang M-Y, Biswas A, Yıldırım Y, Moraru L, Moldovanu S & Alshehri H M, 2023. Optical solitons for a concatenation model by trial equation approach. Electronics. 12 (1): 19. doi:10.3390/electronics12010019
    11. Yildirim Y, Biswas A, Moraru L. & Alghamdi A A, 2023. Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics. 11 (7): 1709. doi:10.3390/math11071709
    12. Hayek M, 2011. Exact and traveling-wave solutions for convection-diffusion-reaction equation with power-law nonlinearity. Appl.Math.Comput. 218: 2407-2420. doi:10.1016/j.amc.2011.07.034
    13. Kudryashov N A, 2005. Exact solitary waves of the Fisher equation. Phys.Lett. A. 342: 99-106. doi:10.1016/j.physleta.2005.05.025
    14. Kudryashov N A, 2005. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solit.Fractals 24: 1217-1231. doi:10.1016/j.chaos.2004.09.109
    15. Bilige S & Chaolu T, 2010. An extended simplest equation method and its application to several forms of the fifth-order KdV equation. Appl.Math.Comput. 216: 3146-3153. doi:10.1016/j.amc.2010.04.029
    16. Boardman A D & Xie M, 2001. Spatial solitons in discontinuous magneto-optic waveguides. J.Opt. B: Quant.Semi-Class.Opt. 3: S244. doi:10.1088/1464-4266/3/2/376
    17. Shoji Y & Mizumoto T, 2018. Waveguide magneto-optic devices for photonics integrated circuits. Opt.Mat.Exp. 8 (8): 2387-2394. doi:10.1364/OME.8.002387
    18. Younas U & Ren J, 2021. Investigation of exact soliton solutions in magneto-optic waveguides and its stability analysis. Res.Phys. 21: 103816. doi:10.1016/j.rinp.2021.103816
    19. Haider T, 2017. A review of magneto-optic effects and its application. Int. J. Appl. Electromagn. 7 (1): 17-24.
    20. Bouchelaghem A, Hocini A, Saigaa D, Bouchemat T, Royer F & Rousseau JJ, 2011. Magneto-optical rib waveguide with low refractive index. Morocc.J.Condens.Matt. 13(3): 92-94.

    У цій статті приділяється увага відновленню солітонів у магніто-оптичних хвилеводах для моделі конкатенації з нелінійним показником заломлення за законом Керра. Підхід з найпростішим рівнянням, а також розширений метод найпростіших рівнянь спільно розкривають повний спектр розв'язків солітонів для цієї моделі. Обмеження параметрів гарантують існування таких солітонів.

    Ключові слова: solitons, concatenation model, magneto-optic waveguide, simplest equation method


© Ukrainian Journal of Physical Optics ©