Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Optical solitons for the concatenation model with Kudryashov`s approaches

1Akshat Kukkar, 1Sachin Kumar, 1Sandeep Malik, 2,3,4,5Anjan Biswas, 6,7Yakup Yildirim, 8Seithuti P. Moshokoa, 9Salam Khan and 3Abdulah A. Alghamdi

1Department of Mathematics and Statistics, Central University of Punjab, Bathinda-151401, Punjab, India
2Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa
6Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey
7Department of Mathematics, Near East University, 99138 Nicosia, Cyprus
8Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria-0008, South Africa
9Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762-7500, USA

ABSTRACT

This paper implements two of Kudryashov’s approaches to extract optical soliton solutions to the concatenation model that is a conjunction of the nonlinear Schrödinger’s equation, Lakshmanan–Porsezian–Daniel model, and the Sasa–Satsuma equation. A full spectrum of soliton solutions emerged along with the parameter constraints that are all comprehensively presented.

Keywords: solitons, concatenation model, Kudryashov approach

UDC: 535.32

    1. Ankiewicz A & Akhmediev N, 2014. Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A. 378: 358-361. doi:10.1016/j.physleta.2013.11.031
    2. Ankiewicz A, Wang Y, Wabnitz S & Akhmediev N, 2014. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys.Rev.E. 89: 012907. doi:10.1103/PhysRevE.89.012907
    3. Biswas A, Vega-Guzman J, Kara A H, Khan S, Triki H, Gonzalez-Gaxiola O, Moraru L & Georgescu P L, 2023. Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach. Universe 9(1): 15. doi:10.3390/universe9010015
    4. Biswas A, Vega-Guzman J, Yildirim Y, Moraru L, Iticescu C & Alghamdi A A, 2023. Optical solitons for the concatenation model with differential group delay: undetermined coefficients. Mathematics 11(9): 2012. doi:10.3390/math11092012
    5. Kudryashov NA, Biswas A, Borodina A G, Yildirim Y & Alshehri H M, 2023. Painleve analysis and optical solitons for a concatenated model. Optik 272: 170255. doi:10.1016/j.ijleo.2022.170255
    6. Triki H, Sun Y, Zhou Q, Biswas A, Yildirim Y & Alshehri H M, 2022. Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos Sol.Fract. 164: 112622. doi:10.1016/j.chaos.2022.112622
    7. Wang M-Y, Biswas A, Yıldırım Y, Moraru L, Moldovanu S & Alshehri H M, 2023. Optical solitons for a concatenation model by trial equation approach. Electronics 12(1): 19. doi:10.3390/electronics12010019
    8. Yildirim Y, Biswas A, Moraru L & Alghamdi A A, 2023. Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics 11(7): 1709. doi:10.3390/math11071709
    9. Onder I, Secer A, Ozisik M & Bayram M, 2023. Investigation of optical soliton solutions for the perturbed Gerdjikov-Ivanov equation with full-nonlinearity. Heliyon 9(2): e13519. doi:10.1016/j.heliyon.2023.e13519
    10. Kudryashov N A, 2012. One method for finding exact solutions of nonlinear differential equations". Commun.Nonlin.Sci.Num.Simul. 17(6): 2248-2253. doi:10.1016/j.cnsns.2011.10.016

    У цій статті реалізовано два підходи Кудряшова для виділення оптичних солітонних розв’язків моделі конкатенації, яка є кон’юнкцією нелінійного рівняння Шредінгера, моделі Лакшманана–Порсезіана–Даніеля та рівняння Саса–Сацуми. Отримано повний спектр солітонних рішень разом із обмеженнями параметрів, які вичерпно представлені в роботі.

    Ключові слова: солітони, модель конкатенації, підходи Кудряшова


© Ukrainian Journal of Physical Optics ©