Ukrainian Journal of Physical Optics

2023 Volume 24, Issue 1

ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

First-principles study of structural, electronic, elastic and optical properties of alkali lead iodides MPbI3 (M = Li, Na, K)

1Hameed T. Abdulla and 2Sarkawt A. Sami

1Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
2Department of Physics, College of Science, University of Duhok, Kurdistan Region, Iraq


Inorganic halide-based perovskites are of great interest as materials for photo-voltaic and optoelectronic devices. Here we present a first-principles study of the structural, electronic, elastic and optical properties of alkali-metal lead iodides MPbI3 (M = Li, Na, K), with the emphasis on the role of their first cation M. In particular, this work is the first investigation of the elastic and optical properties of MPbI3 (M = Na, K). Our results show that the first cation has insignificant effect on the properties mentioned above, although there is some increase in the lattice constant when we pass from Li to Na. The energy band gap values calculated for our perovskites in a generalized gradient approximation agree with the available theoretical data but not with the experimental results. A better agreement with the experiment can be achieved with the approaches of Green’s function and screened Coulomb interaction approximation. We demonstrate that our compounds have a direct band gap. The optical properties of MPbI3 are calculated using a density-functional perturbation theory. Our data shows that MPbI3 (M = Na, K) have a weak response to electromagnetic radiation at high photon energies and a strong response at low energies.

Keywords: perovskites, structure, elastic properties, optical properties, density-functional theory, energy gap, density of states

UDC: 535.3

    1. Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J and Snaith H J, 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 342: 341-344. doi:10.1126/science.1243982
    2. Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M, 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499: 316-319. doi:10.1038/nature12340
    3. Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Nuh J H and Seok S I, 2017. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 356: 1376-1379. doi:10.1126/science.aan2301
    4. Duan J, Zhao Y, Yang X, Wang Y, He B and Tang Q, 2018. Lanthanide ions doped CsPbBr3 halides for HTM‐free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open‐circuit voltage of 1.594 V. Adv. Ener. Mater. 8: 1802346. doi:10.1002/aenm.201802346
    5. Kojima A, Teshima K, Shirai Y and Miyasaka T, 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Amer. Chem. Soc. 131: 6050-6051. doi:10.1021/ja809598r
    6. Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B and Ballif C, 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater. 17: 820-826. doi:10.1038/s41563-018-0115-4
    7. Kim H P, Vasilopoulou M, Ullah H, Bibi S, Gavim A E X, Macedo A G and Nazeeruddin M K, 2020. A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale. 12: 7641-7650. doi:10.1039/C9NR10745B
    8. Yang S, Fu W, Zhang Z, Chen H and Li C Z, 2017. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A. 5: 11462-11482. doi:10.1039/C7TA00366H
    9. Sutherland B R and Sargent E H, 2016. Perovskite photonic sources. Nature Photon. 10: 295-302. doi:10.1038/nphoton.2016.62
    10. Ahmadi M, Wu T and Hu B, 2017. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv. Mater. 29: 1605242. doi:10.1002/adma.201605242
    11. Nazarenko O, Yakunin S, Morad V, Cherniukh I and Kovalenko M V, 2017. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9: e373-e373. doi:10.1038/am.2017.45
    12. Pan Weicheng, Wu Haodi, Luo Jiajun, Deng Zhenzhou, Ge Cong, Chen Chao, Jiang Xiaowei, Yin Wan-Jian, Niu Guangda, Zhu Lujun, Yin Lixiao, Zhou Ying, Xie Qingguo, Ke Xiaoxing, Sui Manling and Tang Jiang, 2017. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photon. 11: 726-732. doi:10.1038/s41566-017-0012-4
    13. Shockley W and Queisser H J, 1961. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 32: 510-519. doi:10.1063/1.1736034
    14. Luo D, Su R, Zhang W, Gong Q and Zhu R, 2020. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Rev. Mater. 5: 44-60. doi:10.1038/s41578-019-0151-y
    15. Duan J, Wang Y, Yang X and Tang Q, 2020. Alkyl chain regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells. Angew. Chem. Int. Ed. 59: 4391-4395. doi:10.1002/anie.202000199
    16. Grätzel C and Zakeeruddin S M, 2013. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. Mater. Today. 16: 11-18. doi:10.1016/j.mattod.2013.01.020
    17. Liu M, Johnston M B and Snaith H J, 2013. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501: 395-398. doi:10.1038/nature12509
    18. Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G and Yang Y, 2014. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Amer. Chem. Soc. 136: 622-625. doi:10.1021/ja411509g
    19. Jeon N J, Noh J H, Kim Y C, Yang, W S, Ryu S and Seok S I, 2014. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Mater. 13: 897-903. doi:10.1038/nmat4014
    20. Mao X, Sun L, Wu T, Chu T, Deng W and Han K, 2018. First-principles screening of all-inorganic lead-free ABX3 perovskites. J. Phys. Chem. C. 122: 7670-7675. doi:10.1021/acs.jpcc.8b02448
    21. Wu S, Li Z, Zhang J, Liu T, Zhu Z and Jen A K Y, 2019. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 55: 4315-4318. doi:10.1039/C9CC00016J
    22. Park Y and Park B, 2018. Interfacial energy band bending and carrier trapping at the vacuum-deposited MAPbI3 perovskite/gate dielectric interface. Res. Phys. 11: 302-305. doi:10.1016/j.rinp.2018.08.043
    23. Tsaytler P, Harding H P, Ron D and Bertolotti A, 2011. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 332: 91-94. doi:10.1126/science.1201396
    24. Brivio F, Walker A B and Walsh A, 2013. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Appl. Mater. 1: 042111. doi:10.1063/1.4824147
    25. Frost J M, Butler K T, Brivio F, Hendon C H, Van Schilfgaarde M and Walsh A, 2014. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14: 2584-2590. doi:10.1021/nl500390f
    26. Kulbak M, Cahen D and Hodes G, 2015. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6: 2452-2456. doi:10.1021/acs.jpclett.5b00968
    27. Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H and McGehee M D, 2016. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7: 746-751. doi:10.1021/acs.jpclett.6b00002
    28. Shi J, Wang Y and Zhao Y, 2019. Inorganic CsPbI3 perovskites toward high‐efficiency photovoltaics. Energy & Env. Mater. 2: 73-78. doi:10.1002/eem2.12039
    29. Huang L Y and Lambrecht W R, 2013. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B. 88: 165203. doi:10.1103/PhysRevB.88.165203
    30. Jong U G, Yu C J, Kye Y H, Choe Y G, Hao W and Li S, 2019. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites. Inorg. Chem. 58: 4134-4140. doi:10.1021/acs.inorgchem.8b03095
    31. Yapi C M H, Mélèdje C D, Oyédélé O S and Mégnassan E E, 2020. Propriétés électroniques et optiques des pérovskites inorganiques halogénées de type ASiI3 (A= Li, Na, K, Rb et Cs) par la méthode de la Théorie de la Fonctionnelle de la Densité (DFT). AMReS Sciences des Structures et de la Matière. 2: 23-34.
    32. Dimesso L, Wussler M, Mayer T, Mankel E and Jaegermann W, 2016. Inorganic alkali lead iodide semiconducting APbI3 (A= Li, Na, K, Cs) and NH4PbI3 films prepared from solution: structure, morphology, and electronic structure. AIMS Mater. Sci. 3: 737-755. doi:10.3934/matersci.2016.3.737
    33. Abdulkareem N and Sami S, 2019. Structure, bandgap and optical properties of cubic CsPbX3 (X= Cl, Br and I) under hydrostatic pressure. Ukr. J. Phys. Opt. 20: 132-141. doi:10.3116/16091833/20/3/132/2019
    34. Liang J, Liu J and Jin Z, 2017. All‐inorganic halide perovskites for optoelectronics: Progress and prospects. RRL Solar. 1: 1700086. doi:10.1002/solr.201700086
    35. Ma X, Yang L, Lei K, Zheng S, Chen C and Song H, 2020. Doping in inorganic perovskite for photovoltaic application. Nano Energy. 78: 105354. doi:10.1016/j.nanoen.2020.105354
    36. Liu C, Li W, Zhang C, Ma Y, Fan J and Mai Y, 2018. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Amer. Chem. Soc. 140: 3825-3828. doi:10.1021/jacs.7b13229
    37. Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y and Huang W, 2020. Tailoring component interaction for air‐processed efficient and stable all‐inorganic perovskite photovoltaic. Angew. Chem. Int. Ed. 59: 13354-13361. doi:10.1002/anie.202004256
    38. Tai Q, Tang K C and Yan F, 2019. Recent progress of inorganic perovskite solar cells. Energy & Environ. Sci. 12: 2375-2405. doi:10.1039/C9EE01479A
    39. Wang Y, Liu X, Zhang T, Wang X, Kan M, Shi J and Zhao Y, 2019. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. 131: 16844-16849. doi:10.1002/ange.201910800
    40. Pitriana P, Wungu T D K and Hidayat R, 2019. The characteristics of band structures and crystal binding in all-inorganic perovskite APbBr3 studied by the first principle calculations using the density functional theory (DFT) method. Res. Phys. 15: 102592. doi:10.1016/j.rinp.2019.102592
    41. Pitriana P, Wungu T D K, Herman H and Hidayat R, 2019. Electronic structure calculations of alkali lead iodide APbI3 (A= Li, Na, K, Rb or Cs) using density functional theory (DFT) method. J. Phys.: Conf. Ser. 1204: 012107. doi:10.1088/1742-6596/1204/1/012107
    42. Gonze X, Jollet F, Araujo F A, Adams D, Amadon B, Applencourt T, Audouze C, Beuken J-M, Bieder J, Bokhanchukh A, Bousquet E, Bruneval F, Caliste D, Cote M, Dahm F, Da Pieve F, Delaveau M, Di Gennaro M and Zwanziger J W, 2016. Recent developments in the ABINIT software package. Comp. Phys. Commun. 205: 106-131. doi:10.1016/j.cpc.2016.04.003
    43. Perdew J P, Burke K and Ernzerhof M, 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865-3868. doi:10.1103/PhysRevLett.77.3865
    44. Krack M, 2005. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114: 145-152. doi:10.1007/s00214-005-0655-y
    45. Goedecker S, Teter M and Hutter J, 1996. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B. 54: 1703-1710. doi:10.1103/PhysRevB.54.1703
    46. Monkhorst H J and Pack J D, 1976. Special points for Brillouin-zone integrations. Phys. Rev. B. 13: 5188. doi:10.1103/PhysRevB.13.5188
    47. Lucarini V, Saarinen J J, Peiponen K E, Vartiainen E M. Kramers-Kronig Relations in Optical Materials Research. Springer Science & Business Media (2005).
    48. Sharma S and Ambrosch-Draxl C, 2004. Second-harmonic optical response from first principles. Phys. Scripta. 2004: 128-134. doi:10.1238/Physica.Topical.109a00128
    49. Ahmad M, Rehman G, Ali L, Shafiq M, Iqbal R, Ahmad R, Khan T, Jalali-Asadabadi S, Maqbool M and Ahmad I, 2017. Structural, electronic and optical properties of CsPbX3 (X= Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloy. Comp. 705: 828-839. doi:10.1016/j.jallcom.2017.02.147
    50. Abdulkareem N A, Sami S A and Elias B H, 2020. Structural, electronic and optical properties of cubic perovskite CsPbX3 (X= Br, Cl and I). Sci. J. Univ. Zakho. 8: 23-28. doi:10.25271/sjuoz.2020.8.1.632
    51. Murnaghan F D, 1944. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30: 244-247. doi:10.1073/pnas.30.9.244
    52. Birch F, 1947. Finite elastic strain of cubic crystals. Phys.Rev. 71: 809-824. doi:10.1103/PhysRev.71.809
    53. Belabbas M, Marbouh N, Arbouche O and Hussain A, 2020. Optoelectronic properties of the novel perovskite materials LiPb(Cl: Br: I)3 for enhanced hydrogen production by visible photo-catalytic activity: theoretical prediction based on empirical formulae and DFT. Int. J. Hydrog. Ener. 45: 33466-33477. doi:10.1016/j.ijhydene.2020.09.066
    54. Pitriana P, Wungu T D K, Hidayat R and Herman H, 2019. Ab-initio calculation of APbI3 (A= Li, Na, K, Rb and Cs) perovskite crystal and their lattice constants optimization using density functional theory. J. Phys.: Conf. Ser. 1170: 012023. doi:10.1088/1742-6596/1170/1/012023
    55. Pitriana P, Wungu T D K, Herman H and Hidayat R, 2018. The computation parameters optimizations for electronic structure calculation of LiPbl3 perovskite by the density functional theory method. IOP Conf. Ser.: Mater. Sci. Engin. 434: 012026. doi:10.1088/1757-899X/434/1/012026
    56. Filip M R, Eperon G E, Snaith H J and Giustino F, 2014. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Commun. 5: 1-9. doi:10.1038/ncomms6757
    57. Salau A M, 1980. Fundamental absorption edge in PbI2: KI alloys. Sol. Ener. Mater. 2: 327-332. doi:10.1016/0165-1633(80)90008-8
    58. Pugh S F, 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45: 823-843. doi:10.1080/14786440808520496
    59. Nye J F. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press (1985).
    60. Perger W F, Criswell J, Civalleri B and Dovesi R, 2009. Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comp. Phys. Commun. 180: 1753-1759. doi:10.1016/j.cpc.2009.04.022
    61. Pettifor D G, 1992. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Techn. 8: 345-349. doi:10.1179/mst.1992.8.4.345
    62. Zener C. Elasticity and Anelasticity of Metals. University of Chicago Press (1948).
    63. Hill R, 1952. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A. 65: 349-354. doi:10.1088/0370-1298/65/5/307
    64. Born M, 1940. On the stability of crystal lattices. I. Math. Proc. Cambridge Philos. Soc. 36: 160-172. doi:10.1017/S0305004100017138
    65. Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S and Yang X J, 2012. First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure. Intermet. 31: 257-263. doi:10.1016/j.intermet.2012.07.017
    66. Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J. 2007. Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Phys. Rev. B. 76: 054115. doi:10.1103/PhysRevB.76.059904
    67. Cao J and Li F, 2016. Critical Poisson's ratio between toughness and brittleness. Philos. Mag. Lett. 96: 425-431. doi:10.1080/09500839.2016.1243264
    68. Liu Z J, Sun X W, Zhang C R, Hu J B, Song T and Qi J H, 2011. Elastic tensor and thermodynamic property of magnesium silicate perovskite from first-principles calculations. Chin. J. Chem. Phys. 24: 703-710. doi:10.1088/1674-0068/24/06/703-710
    69. Liu Y, Wang K, Xiao H, Chen G, Wang Z, Hu T, Fan T and Ma L, 2020. Theoretical study of the mechanical properties of CrFeCoNiMox (0.1 ≤ x ≤ 0.3) alloys. RSC Adv. 10: 14080-14088. doi:10.1039/D0RA00111B
    70. Nong Z S, Zhu J C, Cao Y, Yang X W, Lai Z H and Liu Y, 2013. A first-principles study on the structural, elastic and electronic properties of the C14 Laves phase compounds TiX2 (X = Cr, Mn, Fe). Physica B. 419: 11-18. doi:10.1016/j.physb.2013.03.012
    71. Pfrommer B G, Côté M, Louie S G and Cohen M L, 1997. Relaxation of crystals with the quasi-Newton method. J. Comp. Phys. 131: 233-240. doi:10.1006/jcph.1996.5612
    72. Fatima B, Chouhan S S, Acharya N and Sanyal S P, 2014. Structural, electronic, elastic and mechanical properties of ScNi, ScPd and ScPt: a FP-LAPW study. Adv. Mater. Res. 1047: 27-34. doi:10.4028/
    73. Cohen M L and Chelikowsky J R. Electronic Structure and Optical Properties of Semiconductors (Vol. 75) Springer Science & Business Media (2012).
    74. Kumar V, Chandra S and Singh J K, 2017. Electronic, elastic and optical properties of divalent (R+ 2X) and trivalent (R+ 3X) rare earth monochalcogenides. Indian J. Phys. 91: 875-881. doi:10.1007/s12648-017-0983-5
    75. Askari M, Yegnanarayanan S and Adibi A, 2010. Photonic crystal waveguide based refractive index sensor. In Frontiers in Optics 2010 / Laser Science XXVI, OSA Technical Digest (CD) (Optica Publishing Group, 2010), paper FMJ1. doi:10.1364/FIO.2010.FMJ1
    76. Nunes P S, Mortensen N A, Kutter J P and Mogensen K B, 2010. Refractive index sensor based on a 1D photonic crystal in a microfluidic channel. Sensors. 10: 2348-2358. doi:10.3390/s100302348

    Перовськити на основі неорганічних галідів викликають значний інтерес як матеріали для фотоелектричних та оптоелектронних пристроїв. Тут ми представляємо першопринципні дослідження структурних, електронних, пружних і оптичних властивостей йодидів свинцю лужних металів MPbI3 (M = Li, Na, K) із наголосом на ролі їхнього першого катіону M. Зокрема, ця робота є першим дослідженням пружних і оптичних властивостей MPbI3 (M = Na, K). Наші результати показують, що перший катіон має незначний вплив на згадані вище властивості, хоча спостерігається деяке зростання сталої ґратки при переході від Li до Na. Величини ширини забороненої зони, розраховані для наших перовскітів в узагальненому градієнтному наближенні, узгоджуються з наявними теоретичними даними, але не з експериментальними результатами. Кращої узгодженості з експериментом можна досягти за допомогою підходів функції Гріна та наближення екранованої кулонівської взаємодії. Продемонстровано, що наші сполуки мають пряму заборонену зону. Оптичні властивості MP7bI3 розраховано за допомогою теорії збурень функціоналу густини. Наші дані показують, що MPbI3 (M = Na, K) виявляють слабку реакцію на електромагнітне випромінювання при високих енергіях фотонів і сильну реакцію при низьких енергіях.

    Ключові слова: перовськити, структура, пружні властивості, оптичні властивості, теорія функціоналу густини, енергетична щілина, густина станів

© Ukrainian Journal of Physical Optics ©