Ukrainian Journal of Physical Optics

2022 Volume 23, Issue 4

ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Tribological properties of picosecond laser-textured titanium alloys under different lubrication conditions

1Jialiang Guo, 1,2,3,4Fang Wang, 1,2,3Juin J. Liou and 1,2,3,4Yuhuai Liu

1National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, School of Electrical and Information Engineering, Zhengzhou University, 100 Science Avenue, Fengyang Street, High-Tech District, Zhengzhou, Henan 450001, China
2Institute of Intelligence Sensing, Zhengzhou University, 100 Science Avenue, Fengyang Street, High-Tech District, Zhengzhou, Henan 450001, China
3Research Institute of Industrial Technology Co. Ltd., Zhengzhou University, 11 Changchun Road, Wutong Street, High-tech District, Zhengzhou, Henan 450001, China
4Zhengzhou Way Do Electronics Co. Ltd., 11 Changchun Road, Wutong Street, High-tech District, Zhengzhou, Henan 450001, China


Laser surface texturing has repeatedly demonstrated great potentials for improving a wear resistance. It represents a simple, highly efficient and controllable tool. To increase the utility of Ti-6Al-4V titanium alloy in complex industrial-application environments, we suggest a highly reproducible hydrophobic wear-resistant surface-preparation method. The surface morphology, the chemical composition and the wettability of a fluorinated picosecond laser-textured titanium alloy are analyzed experimentally. A ball-disk reciprocating friction test is used to examine the tribological properties of a Si3N4 ball sliding against a titanium-alloy surface under different lubrication conditions. The effects of laser-texturing pattern and scanning interval on the water-contact angle and the coefficient of friction (CoF) are studied. In general, the surfaces with sparse scanning intervals exhibit low CoFs under dry and water-lubricated conditions. Under dry, water- and oil-lubricated conditions, the CoF of the textured surfaces decreases respectively by up to 18, 21 and 60%, if compared with that of the original surface.

Keywords: picosecond lasers, surface textures, titanium alloys, wettability, friction coefficient

UDC: 621.7+535

    1. Marian M, Berman D, Rota A, Jackson R L and Rosenkranz A, 2022. Layered 2D nanomaterials to tailor friction and wear in machine elements - a review. Adv. Mater. Interfaces. 9: 2101622. doi:10.1002/admi.202101622
    2. Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K and Erdemir A, 2017. Global energy consumption due to friction and wear in the mining industry. Tribol. Int. 115: 116-139. doi:10.1016/j.triboint.2017.05.010
    3. Ghasemlou M, Le P H, Daver F, Murdoch B G, Ivanova E P and Adhikari B, 2021. Robust and eco-friendly superhydrophobic starch nanohybrid materials with engineered lotus leaf mimetic multiscale hierarchical structures. ACS Appl. Mater. Interfaces. 13: 36558-36573. doi:10.1021/acsami.1c09959
    4. Liu Y, Gu H, Jia Y, Liu J, Zhang H, Wang R, Zhang B, Zhang H and Zhang Q, 2019. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chem. Eng. J. 356: 318-328. doi:10.1016/j.cej.2018.09.022
    5. Shao C, Chi J, Chen Z, Cai L and Zhao Y, 2019. Superwettable colloidal crystal micropatterns on butterfly wing surface for ultrasensitive detection. J. Colloid Interface Sci. 546: 122-129. doi:10.1016/j.jcis.2019.03.064
    6. Boinovich L B, Emelyanenko A M, Modestov A D, Domantovsky A G and Emelyanenko K A, 2015. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment. ACS Appl. Mater. Interfaces. 7: 19500-19508. doi:10.1021/acsami.5b06217
    7. Xin G, Wu C, Cao H, Liu W, Li B, Huang Y, Rong Y and Zhang G, 2020. Superhydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance. Surface and Coatings Technol. 391: 125707. doi:10.1016/j.surfcoat.2020.125707
    8. Volpe A, Gaudiuso C and Ancona A, 2020. Laser fabrication of anti-icing surfaces: a review. Mater. 13: 5692. doi:10.3390/ma13245692
    9. Ahlawat S, Singh A, Mukhopadhyay P K, Singh R and Bindra K S, 2021. Nanosecond laser induced glass particle deposition over steel mesh for long-term superhydrophilicity and gravity driven oil water separation. Mater. Chem. Phys. 263: 124343. doi:10.1016/j.matchemphys.2021.124343
    10. Schille J, Schneider L, Mauersberger S, Szokup S, Höhn S, Pötschke J, Reiß F, Leidich E and Löschner U, 2020. High-rate laser surface texturing for advanced tribological functionality. Lubricants. 8: 33. doi:10.3390/lubricants8030033
    11. Qian S, Ji F, Qu N and Li H, 2014. Improving the localization of surface texture by electrochemical machining with auxiliary anode. Mater. Manuf. Processes. 29: 1488-1493. doi:10.1080/10426914.2014.930950
    12. Karmiris-Obratański P, ZagórskiK, Papazoglou E L and Markopoulos A P, 2021. Surface texture and integrity of electrical discharged machined titanium alloy. Int. J. Adv. Manuf. Technol. 115: 733-747. doi:10.1007/s00170-020-06159-z
    13. 13 Su X, Shi L, Huang W and Wang X, 2016. A multi-phase micro-abrasive jet machining technique for the surface texturing of mechanical seals. Int. J. Adv. Manuf. Technol. 86: 2047-2054. doi:10.1007/s00170-015-8272-y
    14. Xu Y, Yu J, Geng J, Abuflaha R, Olson D, Hu X and Tysoe W T, 2018. Characterization of the tribological behavior of the textured steel surfaces fabricated by photolithographic etching. Tribol. Lett. 66: 1-15. doi:10.1007/s11249-018-1003-4
    15. Ahn S, Park H, Cho J, Park C, Park J, Lee H, Hong K and Bong S, Yi J, 2021. Reactive-ion-etched glass surface with 2D periodic surface texture for application in solar cells. Optik. 229: 166304. doi:10.1016/j.ijleo.2021.166304
    16. King D L and Buck M E, Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells. Sandia National Laboratories, Albuquerque, New Mexico, 1991.
    17. Bonse J, Kirner S V, Griepentrog M, Spaltmann D and Krüger J, 2018. Femtosecond laser texturing of surfaces for tribological applications. Mater. 11: 801. doi:10.3390/ma11050801
    18. Bertolete M, Barbosa P A, Machado ÁR, Samad R E, Vieira N D, Vilar R and De Rossi W, 2018. Effects of texturing the rake surfaces of cemented tungsten carbide tools by ultrashort laser pulses in machining of martensitic stainless steel. Int. J. Adv. Manuf. Technol. 98: 2653-2664. doi:10.1007/s00170-018-2407-x
    19. Kumar M, Ranjan V and Tyagi R, 2020. Effect of shape, density, and an array of dimples on the friction and wear performance of laser textured bearing steel under dry sliding. J. Mater. Eng. Perform. 29: 2827-2838. doi:10.1007/s11665-020-04816-8
    20. Huang J, Zhang L, Wei S, Yang Y, Yang S and Shen Z, 2019. Fabrication of the laser textured nickel surface and its tribological property under the water lubrication. AIP Adv. 9: 085224. doi:10.1063/1.5096922
    21. Jendoubi H, Smerdova O and Brunetière N, 2021. Unexpected frictional behavior of laser-textured hydrophobic surfaces. Lubricants. 9: 31. doi:10.3390/lubricants9030031
    22. Huang J, Wei S, Zhang L, Yang Y, Yang S and Shen Z, 2019. Fabricating the superhydrophobic nickel and improving its antifriction performance by the laser surface texturing. Mater. 12: 1155. doi:10.3390/ma12071155
    23. Young T, 1805. An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. London. 95: 65-87. doi:10.1098/rstl.1805.0005
    24. Cassie A B D and Baxter S, 1944. Wettability of porous surfaces. Faraday Society. 40: 546-551. doi:10.1039/tf9444000546
    25. Wang Z, Zhao Q, Wang C and Zhang Y, 2015. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing. Appl. Phys. A. 119: 1155-1163. doi:10.1007/s00339-015-9085-4
    26. Ding Q, Wang L, Hu L, Hu T and Wang Y, 2012. The pairing-dependent effects of laser surface texturing on micro tribological behavior of amorphous carbon film. Wear. 274-275: 43-49. doi:10.1016/j.wear.2011.08.008
    27. Xing Y, Deng J, Feng X and Yu S, 2013. Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction. Mater. Des. (1980-2015). 52: 234-245. doi:10.1016/j.matdes.2013.05.077
    28. Kalin M and Polajnar M, 2013. The effect of wetting and surface energy on the friction and slip in oil-lubricated contacts. Tribol. Lett. 52: 185-194. doi:10.1007/s11249-013-0194-y
    29. Meng H, Sui G X, Xie G Y and Yang R, 2009. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Compos. Sci. Technol. 69: 606-611. doi:10.1016/j.compscitech.2008.12.004
    30. Wang W, He Y, Zhao J, Mao J, Hu Y and Luo J, 2020. Optimization of groove texture profile to improve hydrodynamic lubrication performance: theory and experiments. Friction. 8: 83-94. doi:10.1007/s40544-018-0247-1
    31. Shum P W, Zhou Z F and Li K Y, 2013. Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribol. Int. 65: 259-264. doi:10.1016/j.triboint.2013.01.012
    32. Flegler F, Neuhäuser S and Groche P, 2020. Influence of sheet metal texture on the adhesive wear and friction behaviour of EN AW-5083 aluminum under dry and starved lubrication. Tribol. Int. 141: 105956. doi:10.1016/j.triboint.2019.105956

    Лазерне текстурування поверхні виявляє значний потенціал для підвищення зносостійкості та є простим, високоефективним і керованим інструментом. Щоб підвищити корисність титанового сплаву Ti-6Al-4V у складних промислових середовищах, ми пропонуємо високовідтворюваний гідрофобний зносостійкий метод підготовки поверхні. Досліджено та проаналізовано морфологію поверхні, хімічний склад і змочуваність фторованого, текстурованого пікосекундним лазером титанового сплаву. Для вивчення трибологічних властивостей кульки Si3N4, що ковзає по поверхні титанового сплаву за різних умов змащування, вжито тест зворотно-поступального тертя кулька–диск. Досліджено вплив візерунка лазерного текстурування та інтервалу сканування на кут контакту з водою та на коефіцієнт тертя (КТ). Загалом, поверхні з рідкими інтервалами сканування демонструють низькі значення КТ у сухих і змащених водою умовах. У сухих умовах, а також умовах змащування водою та оливою, КТ текстурованих поверхонь зменшується відповідно на 18, 21 і 60%, порівняно з показником для вихідної поверхні.

    Ключові слова: пікосекундні лазери, текстура поверхні, титанові сплави, змочуваність, коефіцієнт тертя

© Ukrainian Journal of Physical Optics ©