Ukrainian Journal of Physical Optics

2022 Volume 23, Issue 4

ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme

A. A. Al Qarni, A. M. Bodaqah, A. S. H. F. Mohammed, A. A. Alshaery, H. O. Bakodah and A. Biswas

Department of Mathematics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia,
Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah, Saudi Arabia.
Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA.
Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia.
Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania.
Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa.


We study a class of Lakshmanan–Porsezian–Daniel equations endowed with a cubic–quartic nonlinearity. A highly efficient improved Adomian decomposition approach is employed when deriving a generalized numerical scheme. Our numerical results reveal perfect agreement with the analytical optical solutions known from the literature. In other words, our method provides an astonishing level of accuracy and reliability.

Keywords: optical solitons, Lakshmanan-Porsezian-Daniel model, Kerr-law nonlinearity, improved Adomian decomposition method

UDC: 535.32

    1. Seadawy A R and Lu D, 2017. Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Res. Phys. 7: 43-48. doi:10.1016/j.rinp.2016.11.038
    2. Justin M, Hubert M B, Betchewe G, Doka S Y and Crepin K T, 2018. Chirped solitons in derivative nonlinear Schrödinger equation. Chaos, Solitons & Fractals. 107: 49-54.‏ doi:10.1016/j.chaos.2017.12.010
    3. Bansal A, Biswas A, Zhou Q and Babatin M M, 2018. Lie symmetry analysis for cubic-quartic nonlinear Schrödinger's equation. Optik. 169: 12-15.‏ doi:10.1016/j.ijleo.2018.05.030
    4. Russell J S. Report on waves. Made to the Meetings of the British Association in 1842-43. Print Book, English, 1845.
    5. Asghar Ali, Aly R Seadawy and Dianchen Lu, 2018. New solitary wave solution of some nonlinear models and their applications. Adv. Diff. Equations. 232: 1687-7. doi:10.1186/s13662-018-1687-7
    6. Biswas A, Triki H, Zhou Q, Moshokoa S P, Ullah M Z and Belic M, 2017. Cubic-quartic optical solitons in Kerr and power law media. Optik. 144: 357-362. doi:10.1016/j.ijleo.2017.07.008
    7. Biswas A, Ullah M Z, Zhou Q, Moshokoa S P and Triki H, Belic M, 2017. Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik. 145: 18-21.‏ doi:10.1016/j.ijleo.2017.07.028
    8. Bansal A, Biswas A, Zhou Q and Babatin M M, 2018. Lie symmetry analysis for cubic-quartic nonlinear Schrödinger's equation. Optik. 169: 12-15.‏ doi:10.1016/j.ijleo.2018.05.030
    9. Biswas A, Ekici M, Sonmezoglu A and Belic M R, 2019. Highly dispersive optical solitons with quadratic-cubic law by exp-function. Optik. 186: 431-435.‏ doi:10.1016/j.ijleo.2019.04.058
    10. Blanco-Redondo A, De Sterke C M, Sipe J E, Krauss T F, Eggleton B J and Husko C, 2016. Pure-quartic solitons. Nature Commun. 7: 1-9.‏ doi:10.1038/ncomms10427
    11. Lakshmanan M, Porsezian K and Daniel M, 1988. Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A. 133: 483-488. doi:10.1016/0375-9601(88)90520-8
    12. Kumar S, Biswas A, Zhou Q, Yıldırım Y, Alshehri H M and Belic M R, 2021. Straddled optical solitons for cubic-quartic Lakshmanan-Porsezian-Daniel model by Lie symmetry. Phys. Lett. A. 417: 127706. doi:10.1016/j.physleta.2021.127706
    13. Biswas A, Dakova A, Khan S, Ekici M, Moraru L and Belic M R, 2021. Cubic-quartic optical soliton perturbation with Fokas-Lenells equation by semi-inverse variation. Semicond. Phys. Quant. Electron. Optoelectron. 24: 431-435.‏
    14. Zayed E M, Nofal T A, Gepreel K A, Shohib R and Alngar M E, 2021. Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model. Optik. 233: 166385. doi:10.1016/j.ijleo.2021.166385
    15. Gepreel K A, Nofal T A and Althobaiti A A, 2012. The modified rational Jacobi elliptic functions method for nonlinear differential difference equations. J. Appl. Math. 2012: 427479.
    16. Islam M E, Khan K, Akbar M A and Islam R, 2013. Traveling wave solution of nonlinear evolution equation via exp(-()) - expansion method. Gl. J. Sci. Front. Res. Dec. Sci. 13: 1-10.
    17. Raslan K R, Khalid K A and Shallal M A, 2017. The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos, Solitons & Fractals. 103: 404-409. doi:10.1016/j.chaos.2017.06.029
    18. Nuruddeen R I and Nass A M, 2018. Exact solitary wave solution for the fractional and classical GEW-Burgers equations: an application of Kudryashov method. Taibah Uni. J. Sci. 12: 309-314. doi:10.1080/16583655.2018.1469283
    19. Islam M T, Akbar M A and Azad M A K, 2015. A rational (G'/G)-expansion method and its application to modified KdV-Burgers equation and the (2+1)-dimensional Boussineq equation. Nonlin. Stud. 6: 1-11.
    20. Gepreel K A and Althobaiti A A, 2014. Exact solutions of nonlinear partial fractional differential equations using fractional sub-equations method. Indian J. Phys. 88: 293-300. doi:10.1007/s12648-013-0407-0
    21. Althobaiti A, Althobaiti S, El-Rashidy K and Seadawy A R, 2021. Exact solutions for the nonlinear extended KdV equation in a stratified shear flow using modified exponential rational method. Res. Phys. 29: 104723. doi:10.1016/j.rinp.2021.104723
    22. Mahak N, Akram G, 2020. The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Optik. 207: 164467. doi:10.1016/j.ijleo.2020.164467
    23. Nuruddeen R I, 2018. Multiple soliton solutions for the (3+1) conformable space-time fractional modified Korteweg-de-Vries equations, Ocean J. Eng. Sci. 3: 11-18. doi:10.1016/j.joes.2017.11.004
    24. Nuruddeen R I, Aboodh K S and Khalid K A, 2018. Analytical investigation of soliton solutions to three quantum Zakharov-Kuznetsov equations. Commun. Theor. Phys. 70: 405-412. doi:10.1088/0253-6102/70/4/405
    25. Cattani C, Sulaiman T A, Baskonus H M and Bulut H, 2018. On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov systems. Opt. Quant. Electron. 50: 138. doi:10.1007/s11082-018-1406-3
    26. Chen H T and Hong-Qing Z, 2004. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Chaos Soliton & Fractals. 20: 765-769. doi:10.1016/j.chaos.2003.08.006
    27. Seadawy A R and Lu D, 2017. Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Res. Phys. 7: 43-48. doi:10.1016/j.rinp.2016.11.038
    28. Islam M H, Khan K, Akbar M A and Salam M A, 2014. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation. Springer Plus. 3: 105. doi:10.1186/2193-1801-3-105
    29. Liu W, Zhang Y, Wazwaz A M and Zhou Q, 2019. Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Appl. Math. Comp. 361: 325-331.‏ doi:10.1016/j.amc.2019.05.046
    30. Guan X, Liu W, Zhou Q and Biswas A, 2020. Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Comp. 366: 124757. doi:10.1016/j.amc.2019.124757
    31. Adomian G. Nonlinear stochastic operator equations. San Diego: Academic Press, 1986. doi:10.1016/B978-0-12-044375-8.50012-5
    32. Adomian G. Solving frontier problems of physics. The decomposition method. Boston: Kluwer Academic Publishers, 1994. doi:10.1007/978-94-015-8289-6
    33. Gepreel K A, Nofal T A and Althobaiti A A, 2014. Numerical solutions of the nonlinear partial fractional Zakharov-Kuznetsov equations with time and space fractional, Sci. Res.Ess. 9: 471-482. doi:10.5897/SRE2013.5769
    34. Shakhanda R, Goswami P and He J-H and Althobaiti A, 2021. An approximate solution of the time-fractional two-mode coupled Burgers equations. Fractal and Fractional. 5: 196. doi:10.3390/fractalfract5040196
    35. Cherruault Y, 1990. Convergence of Adomian's methods. Math. Comp. Model. 14: 83-86. doi:10.1016/0895-7177(90)90152-D
    36. Cherruault Y and Adomian G, 1993. Decomposition methods: a new proof of convergence, Math. Comp. Model. 18: 103-106. doi:10.1016/0895-7177(93)90233-O
    37. Al Qarni A A, Banaja M A and Bakodah H O, 2015. Numerical analyses optical solitons in dual core couplers with Kerr law nonlinearity. Appl. Math. 6: 1957-1967. doi:10.4236/am.2015.612173
    38. Banaja MA, AlQarni AA, Bakodah HO, Zhou Qin, Moshokoa Seithuti P., Biswas Anjan, 2017. The investigate of optical solitons in cascaded system by improved adomian decomposition scheme. Optik, 130: 1107-1114. doi:10.1016/j.ijleo.2016.11.125
    39. Mohammed A S H F and Bakodah H O, 2020. Numerical investigation of the Adomian-based methods with w-shaped optical solitons of Chen-Lee-Liu equation. Phys. Scripta. 96: 035206.‏ doi:10.1088/1402-4896/abd0bb
    40. Mohammed A S H F and Bakodah H O, 2021. Approximate solutions for dark and singular optical solitons of Chen-Lee-Liu Model by Adomian-based methods. Int. J. Appl. Comp. Math. 7: 1-12.‏ doi:10.1007/s40819-021-01035-0
    41. Al-Qarni A A, Bakodah H O, Alshaery A A, Biswas A, Yildirim Y, Moraru L and Moldovanu S, 2022. Numerical simulation of cubic-quartic optical solitons with Perturbed Fokas-Lenells equation using improved Adomian decomposition algorithm. Mathematics. 10: 138.‏ doi:10.3390/math10010138
    42. Vega-Guzman J, Biswas A, Kara A H, Mahmood M F, Ekici M, Alshehri H M and Belic M R, 2021. Cubic-quartic optical soliton perturbation and conservation laws with Lakshmanan-Porsezian-Daniel model: undetermined coefficients. J. Nonlin. Opt. Phys. Math. 30: 2150007. doi:10.1142/S0218863521500077

    Досліджено клас рівнянь Лакшманана–Порсезіана–Даніеля, наділених кубічно-квартичною нелінійністю. В отриманні узагальненої числового підходу використано високоефективну покращену схему розкладання Адоміана. Наші чисельні результати виявляють ідеальну згоду з аналітичними рішеннями для оптики, відомими з літератури. Іншими словами, наш метод забезпечує вражаючий рівень точності та надійності.

    Ключові слова: оптичні солітони, модель Лакшманана–Порсезіана–Даніеля, керрівська нелінійність, покращений метод розкладання Адоміана

© Ukrainian Journal of Physical Optics ©