Ukrainian Journal of Physical Optics

2022 Volume 23, Issue 4

ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Triple-cation perovskite/silicon tandem solar cell

Asmontas S., Gradauskas J., Griguceviciene A., Leinartas K., Lucun A., Mujahid M., Petrauskas K., Selskis A., Suziedelis A., Silenas A. and Sirmulis E.

Center for Physical Sciences and Technology, Sauletekio Avenue 3, 10257 Vilnius


A tandem solar cell consisting of perovskite cell overlaid upon silicon cell is a promising option for surpassing the Shockley–Queisser limit for single-junction solar cells. We investigate photovoltaic properties of a triple-cation perovskite/silicon four-terminal tandem solar cell composed of a semitransparent Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3 layer-based perovskite cell placed onto industrial n-type monocrystalline bifacial PERT silicon solar cell. The power-conversion efficiency of 26.6% achieved by us is one of the highest values among those reported for the four-terminal perovskite/silicon tandem solar cells.

Keywords: perovskites, tandem solar cells, power-conversion efficiency, silicon p-n junctions

UDC: 535.215

    1. Yu C, Xu S, Yao J and Han S, 2018. Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts. Crystals. 8: 430-41. doi:10.3390/cryst8110430
    2. Andreani L C, Bozzola A, Kowalczewski P, Liscidini M and Redorici L, 2019. Silicon solar cells: toward the efficiency limits. Adv. Phys. 4: 1548305. doi:10.1080/23746149.2018.1548305
    3. Węgierek P, Pastuszak J, Dziadosz K and Turek M, 2020. Influence of substrate type and dose of implanted ions on the electrical parameters of silicon in terms of improving the efficiency of photovoltaic cells. Energies. 13: 6708. doi:10.3390/en13246708
    4. Tiedje T, Yablonovitch E, Cody G D and Brooks B G, 1984. Limiting efficiency of silicon solar cells. IEEE Trans. Electron. Devices. 31: 711-716. doi:10.1109/T-ED.1984.21594
    5. Ašmontas S, Gradauskas J, Sužiedėlis A, Šilėnas A, Širmulis E, Vaičikauskas V, Vaičiūnas V, Žalys O, Fedorenko L and Bulat L, 2016. Photovoltage formation across GaAs p-n junction under illumination of intense laser radiation. Opt. Quant. Electron. 48: 448. doi:10.1007/s11082-016-0702-z
    6. Ašmontas S, Gradauskas J, Sužiedėlis A, Šilėnas A, Širmulis E, Švedas V, Vaičikauskas V, Vaičiūnas V, Žalys O and Kostylyov V, 2017. Photovoltage formation across Si p-n junction exposed to laser radiation. Mater. Sci. - Poland. 36: 337-340. doi:10.1515/msp-2017-0106
    7. Ašmontas S, Gradauskas J, Sužiedėlis A, Šilėnas A, Širmulis E, Švedas V, Vaičikauskas V and Žalys O, 2018. Hot carrier impact on photovoltage formation in solar cells. Appl. Phys. Lett. 113: 071103. doi:10.1063/1.5043155
    8. Ašmontas S, Fedorenko L, Vlasiuk V, Gorbanyuk T, Kostylyov V, Lytovchenko V, Gradauskas J, Sužiedėlis A, Širmulis E, Žalys O and Masalskyi O, 2020. Suppression of hot carriers by nanoporous silicon for improved operation of a solar cell. Ukr. J. Phys. Opt. 21: 207-214. doi:10.3116/16091833/21/4/207/2020
    9. Ašmontas S, Čerškus A, Gradauskas J, Grigucevičienė A, Leinartas K, Lučun A, Petrauskas K, Selskis A, Sužiedėlis A, Širmulis E and Juškėnas R, 2021. Cesium-containing triple cation perovskite solar cells. Coatings. 11: 279. doi:10.3390/coatings11030279
    10. Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M and Rech B, 2015. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9: 81-88. doi:10.1039/C5EE02965A
    11. McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J and 2016. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science. 351: 151-155. doi:10.1126/science.aad5845
    12. Werner J, Niesen B and Ballif C, 2017. Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - An overview. Adv. Matter. 5: Interf. 1700731. doi:10.1002/admi.201700731
    13. Chen B, Yu Z, Liu K, Zheng X, Liu Y, Shi J, Spronk D, Rudd P N, Holman Z and Huang J, 2019. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule. 3: 1-14. doi:10.1016/j.joule.2018.10.003
    14. Shen H, Walter D, Wu Y, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P and Catchpole K R, 2019. Monolithic perovskite/Si tandem solar cell: pathways to over 30% efficiency. Adv. Energy Mater. 10: 1902840. doi:10.1002/aenm.201902840
    15. Ho-Baillie A W Y, Zheng J, Mahmud M A, Ma F-J, McKenzie D R and Green M A, 2021. Recent progress and future prospects of perovskite solar cells. Appl. Phys. Rev. 8: 041307. doi:10.1063/5.0061483
    16. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang J L, Chang S Y, Zhang Z, Huang W, Wang R, Meng D, Gao F and Yang Y, 2019. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Commun. 10: 570. doi:10.1038/s41467-019-08386-9
    17. Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Leon J J D, Sacchetto D et al., 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater. 17: 820-826. doi:10.1038/s41563-018-0115-4
    18. Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C, 2016. Photovoltaic materials: present efficiencies and future challenges. Science. 352: aad4424-1-aad442-10. doi:10.1126/science.aad4424
    19. Jaysankar M, Filipič M, Zielenski B, Schmager R, Song W, Qiu W, Paetzold U W, Aernouts T, Debucquoy M, Gehlhaar R and Poortmans J, 2018. Perovskite-silicon tandem solar modules with optimized light harvesting. Energy Environ. Sci. 11: 1489-1498. doi:10.1039/C8EE00237A
    20. Charibzadeh S, Hossain I M, Fassl P, Nejand B A, Abzieher T, Schultes M, Ahlswede E, Jackson P, Powalla M, Schäfer S, Rienäcker M, Wietler T, Peibst R, Lemmer U, Richards B S and Paetzold U W, 2020. 2D/3D heterostructure for semitransporant perovskite solar cell with engineering badgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30: 1909919. doi:10.1002/adfm.201909919
    21. Yeom K M, Kim S U, Woo M Y, Noh J H and Im S H, 2020. Recent progress in metal halide perovskite-based tandem solar cell. Adv. Mater. 32: 2002228. doi:10.1002/adma.202002228
    22. De Wolf S, Holovsky J, Moon S-J, Löper P, Niesen B, Ledinsky M, Haug F-J, Yum J-H and Ballif C, 2014. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5: 1035-1039. doi:10.1021/jz500279b
    23. Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M, 2014. High carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26: 1584-11589. doi:10.1002/adma.201305172
    24. Karakus M, Jensen S A, D'Angelo F, Turchinovich D, Bonn M and Cánovas E, 2015. Phonon-electron scattering limits free charge mobility in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6: 4991-4996. doi:10.1021/acs.jpclett.5b02485
    25. Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J, 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 342: 341-344. doi:10.1126/science.1243982
    26. Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N and Fu F, 2020 Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods. 4: 2000395. doi:10.1002/smtd.202000395
    27. Staub F, Hempel H, Hebig J-C, Mock J, Paetzold U W, Rau U, Unold T and Kirchartz T, 2016. Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6: 044017. doi:10.1103/PhysRevApplied.6.044017
    28. Solanki A, Yadav P, Turren-Cruz S-H, Lim S S, Saliba M and Sum T C, 2019. Cation influence on carrier dynamics in perovskite solar cells. Nano Energy. 58: 604-611. doi:10.1016/j.nanoen.2019.01.060
    29. Saliba M, Matsui T, Seo J Y, Domaski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Grätzel M, 2016. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9: 1989-1997. doi:10.1039/C5EE03874J
    30. Singh T and Miyasaka T, 2018. Stabilizing the efficiency beyond 20% with the mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 8: 1700677. doi:10.1002/aenm.201700677
    31. Domanski K, Alharbi E A, Hagfeldt A, Grätzel M and Tress W, 2018. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy. 3: 61-67 doi:10.1038/s41560-017-0060-5
    32. Wang J, Zou X, Zhu J, Cheng J, Chen D, Bai X, Yao Y, Chang C, Yu X, Liu B, Zhou Z and Li G, 2020. Effect of optimization of TiO2 electron transport layer on performance of perovskite solar cells with rough FTO substrates. Materials. 13: 2272. doi:10.3390/ma13102272
    33. Ašmontas S, Čerškus A, Gradauskas J, Grigucevičienė A, Juškėnas R, Leinartas K, Lučun A, Petrauskas K, Selskis A, Staišiūnas L, Sužiedėlis A, Šilėnas A and Širmulis E, 2022. Photoelectric properties of planar and mesoporous structured perovskite solar cells. Materials. 15: 4300. doi:10.3390/ma15124300
    34. Mazarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J and Schlatmann R, 2019. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9: 1803241. doi:10.1002/aenm.201803241
    35. Samantaray M R, Ghosh D S and Chander N, 2022, Four-terminal perovskite/silicon tandem solar cells based on large-area perovskite solar cells utilizing low-cost copper semi-transparent electrode. Appl. Phys. A. 128: 111. doi:10.1007/s00339-021-05234-w

    Тандемний сонячний елемент, який складається з перовскитового елементу, поміщеного поверх кремнієвого елементу, є багатообіцяючим варіантом для перевищення межі Шоклі–Квайссера для одноперехідних сонячних елементів. Ми дослідили фотоелектричні властивості трикатіонного чотиритермінального тандемного перовскит/кремнієвого сонячного елемента, який складається з перовскитового елемента на основі напівпрозорого шару Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3, розміщеного на промисловому кремнієвому монокристалічному двосторонньому сонячному елементі PERT n-типу. Досягнута нами ефективність перетворення енергії у 26.6% є одним із найвищих значень, зареєстрованих для чотиритермінальних тандемних перовскит/кремнієвих сонячних елементів.

    Ключові слова: перовскіти, тандемні сонячні елементи, ефективність перетворення енергії, кремнієві p-n переходи

© Ukrainian Journal of Physical Optics ©