Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
High-power table-top white-light few-cycle laser generator

Walid Tawfik

Download this article

Abstract. We have achieved experimentally a generation of white-light few-cycle femtosecond laser pulses, using a neon-filled hollow-core fibre. The pulses observed by us are as short as 6.22 fs at the repetition rate of 1 kHz, when the input is characterized by the parameters 2.5 mJ and 33 fs. Pulse compression has been achieved using a supercontinuum produced in a static neon-filled hollow fibre, while a pair of chirped mirrors have compensated the dispersion. Our technique allows for directly tuning the pulse duration via changing the gas pressure, while maintaining near-transform-limited pulses with constant output energies and thus reducing the complications introduced by the chirped pulses. Using the measurements of the optical transmission of the fibre as a function of the gas pressure, we have testified a high enough throughput exceeding 60%. This demonstrates the successful compression that yields few-cycle femtosecond-long pulses, with a wide spectral bandwidth. The technique can be used when simultaneously exciting different states in complex molecules.

Keywords: ultrafast lasers, hollow fibres, femtosecond pulses, few-cycle light pulses

PACS: 78.47.jj
UDC: 535.37
Ukr. J. Phys. Opt. 16 111-119
doi: 10.3116/16091833/16/3/111/2015
Received: 26.05.2015

Анотація.  У цій роботі експериментально отримано генерацію “білих” фемтосекундних лазерних імпульсів тривалістю в кількох періодів, використовуючи пустотіле волокно, наповнене неоном. Тривалість спостережуваних імпульсів сягала 6.22 фм за частоти повторення 1 кГц, якщо використовувати вхідні імпульси із 2.5 мДж і 33 фс. Стискання імпульсу суперконтинуумом отримано в статичних, заповнених неоном пустотілих волокнах, а пара дзеркал з лінійною частотною модуляцією забезпечувала компенсацію дисперсії. Запропонований метод дає змогу безпосередньо змінювати тривалість імпульсу тиском газу при збереженні параметрів імпульсу, тим самим послаблюючи труднощі, пов’язані з модульованими імпульсами. Вимірюване пропускання волокна як функція тиску газу перевищувало 60%. Спектральна фаза суперконтинууму виявилась стабільною впродовж кількох годин. Це дало змогу стиснути імпульси аж до фемтосекунд, що складає кілька періодів, із широкою спектральною смугою. Метод можна використовувати для одночасного збудження різних рівнів у складних молекулах. 

REFERENCES
  1. Rocca J J, Shlyaptsev V, Tomasel F G, Cortázar O D, Hartshorn D and Chilla J L A, 1994. Demonstration of a discharge pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73: 2192. doi:10.1103/PhysRevLett.73.2192
  2. Rocca J J, Shlyaptsev V N, Tomasel F G, Cortázar O D, Hartshorn H and Chilla J L A, 1995. Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser. Phys. Rev. Lett. 75: 1236. doi:10.1103/PhysRevLett.75.1236
  3. Walid Tawfik, Aslam Farooq W and Alahmed Z A, 2014. Damage profile of HDPE polymer using laser-induced plasma. J. Opt. Soc. Korea. 18: 50–54. doi:10.3807/JOSK.2014.18.1.050 
  4. Agostini P and DiMauro L, 2004. The physics of attosecond light pulses. Rep. Prog. Phys. 67: 813–855. doi:10.1088/0034-4885/67/6/R01
  5. Krausz F and Ivanov M, 2009. Attosecond physics. Rev. Mod. Phys. 81: 163–234. doi:10.1103/RevModPhys.81.163
  6. Feng L Q and Chu T S, 2012. Nuclear signatures on the molecular harmonic emission and the attosecond pulse generation. J. Chem. Phys. 136: 054102. doi:10.1063/1.3681165
  7. Cairns R A, Bingham R, Jaroszynski D A and Baron M. Laser-plasma interactions (Taylor & Francis, 2009).
  8. Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B. Heinzmann U, Drescher D, and Krausz F, 2001. Attosecond metrology. Nature. 414: 509–513. doi:10.1038/35107000
  9. Helml W, Maier A R, Schweinberger W, Grguraš I, Radcliffe P, Doumy G, Roedig C, Gagnon J, Messerschmidt M, Schorb S, Bostedt C, Grüner F, DiMauro L F, Cubaynes D, Bozek J D, Tschentscher Th, Costello J T, Meyer M, Coffee R, Düsterer S, Cavalieri A L and Kienberger R, 2014. Measuring the temporal structure of few-femtosecond free-electron laser x-ray pulses directly in the time domain. Nature Photonics. 8: 950–957. doi:10.1038/nphoton.2014.278
  10. Li H, Mignolet B, Wachter G, Skruszewicz S, Zherebtsov S, Süßmann F, Kessel A, Trushin SA, Kling Nora G, Kübel M, Ahn B, Kim D, Ben-Itzhak I, Cocke CL, Fennel T, Tiggesbäumker J, Meiwes-Broer K-H, Lemell C, Burgdörfer J, Levine RD, Remacle F and Kling MF, 2015. Coherent electronic wave packet motion in C60 controlled by the waveform and polarization of few-cycle laser fields. Phys. Rev. Lett. 114: 123004. doi:10.1103/PhysRevLett.114.123004
  11. Ishii N, Turi L, Yakovlev V S, Fuji T, Krausz F, Baltuska A, Butkus R, Veitas G, Smilgevicius V, Danielius R and Piskarskas A, 2005. Multimillijoule chirped parametric amplification of few-cycle pulses. Opt. Lett. 30: 567–569. doi:10.1364/OL.30.000567
  12. Shank C V, Fork R L, Yen R, Stolen R H and Tomlinson W J, 1982. Compression of femtosecond optical pulses. Appl. Phys. Lett. 40: 761–762. doi:10.1063/1.93276
  13. Martinez O E, Gordon J P and Fork R L, 1984. Negative group-velocity dispersion using refraction. J. Opt. Soc. Amer. A. 1: 1003–1006. doi:10.1364/JOSAA.1.001003
  14. Fork R L, Martinez O E and Gordon J P, 1984. Negative dispersion using pairs of prisms. Opt. Lett. 9: 150–152. doi:10.1364/OL.9.000150
  15. Tomlinson W J, Stolen R H and Shank C V, 1984. Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Amer. B. 1: 139–149. doi:10.1364/JOSAB.1.000139
  16. Alfano RR, Li Q, Jimbo T, Manassah J and Ho P, 1986. Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Opt. Lett. 11: 626–628. doi:10.1364/OL.11.000626
  17. Schenkel B, Biegert J, Keller U, Vozzi C, Nisoli M, Sansone G, Stagira S, De Silvestri S and Svelto O, 2003. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28: 1987–1989. doi:10.1364/OL.28.001987
  18. Nisoli M, Sansone G, Stagira S, De Silvestri S, Svelto O and Vozzi C, 2002. Ultra-broadband continuum generation by hollow-fiber cascading. Appl. Phys. B. 75: 601–604. doi:10.1007/s00340-002-1042-1
  19. Ito S, Ishikawa H, Miura T, Takasago K, Endo A, Torizuka K, 2003. Seven-terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation. Appl. Phys. B. 76: 497–503. doi:10.1007/s00340-003-1144-4
  20. Seres J, Muller A, Seres E, O'Keeffe K, Lenner M, Herzog R F, Kaplan D, Spielmann Ch and Krausz F, 2003. Sub-10-fs terawatt-scale Ti:sapphire laser system. Opt. Lett. 28: 1832–1834. doi:10.1364/OL.28.001832
  21. Young-Shin Park and Hailin Wang, 2009. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Physics. 5: 489–493. http://dx.doi.org/10.1038/nphys1303
  22. Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J, 2007. Theory of ground state cooling of a mechanical oscillator using dynamical back action. Phys. Rev. Lett. 99: 093901. doi:10.1103/PhysRevLett.99.093901
  23. Marquardt F, Chen JP, Clerk A A and Girvin S M, 2007. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99: 093902. doi:10.1103/PhysRevLett.99.093902
  24. Schliesser A, Riviere R, Anetsberger G, Arcizet O and Kippenberg T J, 2008. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4: 415–419 . doi:10.1038/nphys939
  25. Pervak V, Ahmad I, Trushin S A, Major Z, Apolonski A, Karsch S and Krausz F, 2009. Chirped-pulse amplification of laser pulses with dispersive mirrors. Opt. Express. 17: 19204–19212. doi:10.1364/OE.17.019204 
  26. Mourou G A, Tajima T and Bulanov S V, 2006. Optics in the relativistic regime. Rev. Mod. Phys. 78: 309– 371. doi:10.1103/RevModPhys.78.309
  27. Perry M D and Mourou G, 1994. Terawatt to petawatt subpicosecond lasers. Science. 264: 917–924. doi:10.1126/science.264.5161.917
  28. Gerstner E, 2007. Laser physics: extreme light. Nature 446: 16–18. doi:10.1038/446016a
  29. Krausz F and Ivanov M, 2009. Attosecond physics. Rev. Mod. Phys. 81: 163–234. doi:10.1103/RevModPhys.81.163
  30. Brabec T and Krausz F, 2000. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72: 545–591.doi:10.1103/RevModPhys.72.545
  31. Treacy E B, 1969. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5: 454–458. doi:10.1109/JQE.1969.1076303
  32. Pessot M, Maine P and Mourou G, 1987. 1000 Times expansion compression of optical pulses for chirped pulse amplification. Opt. Commun. 62: 419–421. doi:10.1016/0030-4018(87)90011-3
  33. Cheng Z, Krausz F and Spielmann C, 2002. Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing doubleprism compressor: analysis and performance. Opt. Commun. 201: 145–155. doi:10.1016/S0030-4018(01)01675-3
  34. Pretzler G, Kasper A and Witte K J, 2000. Angular chirp and tilted light pulses in CPA lasers. Appl. Phys. B. 70: 1–9. doi:10.1007/s003400050001
  35. Cavalieri A L, Goulielmakis E, Horvath B, Helml W, Schultze M, Fieß M, Pervak V, Veisz L, Yakovlev V S, Uiberacker M, Apolonski A, Krausz F and Kienberger R, 2007. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New J. Phys. 9: 242. doi:10.1088/1367-2630/9/7/242
  36. Tavella F, Nomura Y, Veisz L, Pervak V, Marcinkevičius A, and Krausz F, 2007. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt. Lett. 32: 2227–2229. doi:10.1364/OL.32.002227
  37. Chuzavkov Yu L, Orlov S N, Polivanov Yu N, Schelev Mikhail Y, Smirnov A V, Smirnov V V, Vorobiev N S, 1999. Single-shot autocorrelator. Proc. SPIE. 3516: 743 (23rd International Congress on High-Speed Photography and Photonics). doi:10.1117/12.350558
  38. Schenkel B, Biegert J, Keller U, Vozzi C, Nisoli M, Sansone G, Stagira S, De Silvestri S and Svelto O, 2003. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28: 1987–1989. doi:10.1364/OL.28.001987
  39. Gallmann L, Steinmeyer G, Sutter D H, Rupp T, Iaconis C, Walmsley I A and Keller U, 2001. Spatially resolved amplitude and phase characterization of femtosecond optical pulses. Opt. Lett. 26: 96–98. doi:10.1364/OL.26.000096
(c) Ukrainian Journal of Physical Optics