Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Preferable geometrical parameters of samples for piezooptic experiments

Kvasnyuk O., Vasylkiv Yu., Krupych O. and Vlokh R.

Download this article

Abstract. We have shown that the errors of experimental determination of piezooptic coefficients, which are caused by friction appearing between sample surfaces and substrates can be eliminated by choosing properly geometrical parameters of the sample. The width-to-height ratio for the sample has to be equal or smaller than 1:3. In this case the error caused by a barrel-shaped distortion is reduced approximately to 1%.

Keywords: piezooptic effect, inhomogeneous stresses, barrel-shaped distorsion

PACS: 78.20.Hp, 07.10.Lw, 07.60.Fs
UDC: 535.012.2
Ukr. J. Phys. Opt. 15 195-206
doi: 10.3116/16091833/15/4/195/2014

Received: 15.10.2014

Анотація. У роботі показано, що похибку експериментального визначення пєзооптичних коефіцієнтів, спричинену силами тертя між поверхнями зразка і підкладками, можна усунути належним підбором геометричних параметрів зразка. Відношення ширини зразка до його висоти повинно дорівнювати або бути меншим за 1:3. У такому разі похибку, спричинену бочкоподібною дисторсією, можна зменшити приблизно до 1%. 

REFERENCES
  1. Narasimhamurty T S. Photoelastic and electrooptic properties of crystals. New York: Plenum Press (1981). doi:10.1007/978-1-4757-0025-1
  2. Sirotin Yu I and Shaskolskaya M P. Fundamentals of crystal physics. Moscow: Nauka (1979).
  3. Vlokh O G. Spatial dispersion phenomena in parametric crystal optics. Lviv: Vyshcha Shkola (1984).
  4. Frocht M M, Photoelasticity. N. Y.: John Wiley (1946).
  5. Kemp James C, 1969. Piezo-optical birefringence modulators: new use for a long-known effect. J. Opt. Soc. Amer. 59: 950–954.
  6. Grakh I I and Mozhanskaya A F, 1971. A type of mechanically anisotropic, optically sensitive material. Mekhanika Polimerov. 5: 835–839.
  7. Weber Y-J, 1995. Determination of internal strain by optical measurements. Phys. Rev. B. 51: 12209–12215. doi:10.1103/PhysRevB.51.12209
  8. Hammer H. and Lionheart W R B, 2005. Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography. J. Opt. Soc. Amer. A. 22: 250–255. doi:10.1364/JOSAA.22.000250
  9. Puro A É and Karov D D, 2007. Tensor field tomography of residual stresses. Opt. Spectrosc. 103: 678–682. doi:10.1134/S0030400X07100244
  10. Aben H, Errapart A, Ainola L and Anton J, 2005. Photoelastic tomography for residual stress measurement in glass. Opt. Eng. 44: 093601. doi:10.1117/1.2047368
  11. Balakshii V I, Parygin V N and Chirkov L E. Physical fundamentals of acoustooptics. Moscow: Radio i Sviaz' (1985).
  12. Xu J and Stroud R. Acousto-optic devices: principles, design, and applications. New York: Wiley (1992).
  13. Mys O, Kostyrko V, Smyk M, Krupych O and Vlokh R, 2014. Anisotropy of acoustooptic figure of merit in optically isotropic media. Appl. Opt. 53: 4616–4627. doi:10.1364/AO.53.004616
  14. Dixon R W, Cohen M G, 1966. A new technique for measuring magnitudes of photoelastic ten-sors and its application to lithium niobate. Appl. Phys. Lett. 8: 205–207. doi:10.1063/1.1754556
  15. Dixon R W, 1967. Photoelastic properties of selected materials and their relevance for application to acoustic light modulators and scanners. J. Appl. Phys. 38: 5149–5153. doi:10.1063/1.1709293
  16. Papadakis E, 1967. Ultrasonic phase velocity by the pulse-echo-overlap method incorporating diffraction phase corrections. J. Acoust. Soc. Amer. 42: 1045–1051. doi:10.1121/1.1910688
  17. Vasylkiv Yu, Kvasnyuk O, Krupych O, Mys O, Maksymuk O and Vlokh R, 2009. Reconstruction of 3D stress fields basing on piezo-optic experiment. Ukr. J. Phys. Opt. 10: 22–37. doi:10.3116/16091833/10/1/22/2009
  18. Krupych O, Savaryn V and Vlokh R, 2014. Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals. Appl. Opt. 53: B1–B7. doi:10.1364/AO.53.0000B1
  19. Krupych O, Savaryn V, Krupych A, Klymiv I and Vlokh R, 2013. Determination of piezo-optic coefficients of crystals by means of four-point bending. Appl. Opt. 52: 4054–4061. doi:10.1364/AO.52.004054
  20. Skab I, Smaga I, Savaryn V, Vasylkiv Yu and Vlokh R, 2011. Torsion method for measuring piezooptic coefficients. Cryst. Res. Technol. 46: 23–36. doi:10.1002/crat.201000495
  21. Vasylkiv Y, Savaryn V, Smaga I, Skab I and Vlokh R, 2011. On determination of sign of the pie-zooptic coefficients using torsion method. Appl. Opt. 50: 2512–2518. doi:10.1364/AO.50.002512
  22. http://hypertextbook.com/facts/2005/glass.shtml
  23. Bayda E N. Some spatial problems of the theory of elasticity. Leningrad: Izd. LGU (1983).
(c) Ukrainian Journal of Physical Optics