Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Photoacoustic response of a common starfish tissue

Guskos N., Majszczyk J., Typek J. , Rybicki J. and Padlyak B.

Download this article

Abstract. A sample of common starfish (Asterias Rubens) tissue has been prepared in the shape of a film to study its photoacoustic (PA) response. A broad absorption band in the PA spectrum is detected in the visible region (a peak at about 570 nm), while the ultraviolet region is distinguished by the absorption bands originating from π → π* and π → n charge transfer transitions. The visible PA spectrum strongly depends on decomposition of sample in the open air. The PA spectrum measured by us is very similar to those obtained earlier for the other living organisms, e.g. Trunculariopis Trunculus and Sea Urchin. The absorption band near 570 nm is similar to that found for spermidine, which is of importance in the information transfer to DNA. The results obtained in this work confirm experimentally that geologically very old organisms have been absorbing especially intensely in that part of solar spectrum for which the water is transparent.

Keywords: photoacoustic spectroscopy, common starfish, electronic transitions

PACS: 78.20.Pa; 87.50.cf 
UDC: 535.2, 577
Ukr. J. Phys. Opt. 14 44-49
doi: 10.3116/16091833/14/1/44/2013
Received: 18.11.2012

Анотація.   Зразки тканин морської зірки (Asterias Rubens) підготовлено у вигляді плівок для досліджень їхнього фотоакустичного відгуку. Виявлено широку смугу поглинання у видимій області (пік поблизу  570 нм), а також  в ультрафіолетовій області спектру, що відповідає переходам π → π* і π → n з переносом заряду. Фотоакустичний спектр у видимій області сильно залежить від розкладу зразка на повітрі. Досліджений фотоакустичний спектр подібний до раніше одержаних спектрів інших живих організмів – Trunculariopis Trunculus і морського їжака. Смуга поглинання в околі  570 нм схожа до смуги спермідину, який має важливе значення в передаванні інформації ДНК. Одержані результати важливі та експериментально підтверджують, що геологічно старі організми особливо інтенсивно поглинають сонячне випромінювання в тій частині спектру, в яких вода прозора.

REFERENCES
  1. Wang X, Xu Y, Xu M, Yokoo S, Fry E S and Wang L V, 2002. Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiment. Med. Phys. 29: 2799-2806. doi:10.1118/1.1521720 PMid:12512713 
  2. Su Y, Zhang F, Xu K, Yao J and Wang R K, 2005. A photoacoustic tomography system for imaging of biological tissues. J. Phys. D: Appl. Phys. 38: 2640-2646. doi:10.1088/0022-3727/38/15/016
  3. Guskos N, Aidinis K, Papadopoulos G J, Majszczyk J, Typek J, Rybicki J, Maryniak M, 2008. Photo-acoustic response of active biological systems. Opt. Mater. 30: 814-816. doi:10.1016/j.optmat.2007.02.004
  4. Guskos N, Majszczyk J, Typek J, Rybicki J, Guskos A, Kruk I, Aidinis C, and Zolnierkiewicz G, Photoacoustic, 2010. Response of Sea Urchin Tissue. Rev. Adv. Mater. Sci. 23: 76-79.
  5. Łomozik L and Gasowska A, 1996. Investigations of binding sites and stability of complexes formed in ternary Cu(II)/adenosine or cytidine / putrescine systems. J. Inorg. Biochem. 62: 103-115. doi:10.1016/0162-0134(95)00120-4
  6. Lomozik L, Gasowska A and Bolewska L, 1996. Copper(II) ions as a factor interferingin the interaction between bioligands in systems with adenosine and polyamines. J. Inorg. Biochem. 63: 191-206. doi:10.1016/0162-0134(95)00215-4
  7. Lomozik L and Gasowska A, 1998. Complexes of copper(II) with spermine and non-covalent interactions in the systems including nucleosides or nucleotides. J. Inorg. Biochem. 72: 37-47. doi:10.1016/S0162-0134(98)10060-0
  8. Guskos N, Papadopoulos G P, Likodimos V, Mair G L R, Majszczyk J, Typek J, Wabia M, Grech E, Dziembowska T, and Perkowska T A, 2000. Photoacoustic detection of d-d transitions and electronic structure of three polyamine copper complexes, J. Phys. D: Appl. Phys. 33: 2664-2668.  doi:10.1088/0022-3727/33/20/320
  9. Guskos N, Papadopoulos G J, LikodimosLikodimos V, Majszczyk J, Typek J, Wabia M, Grech E, Dziembowska T, Perkowska T A and Aidinis C, 2001. Electronic structure of polycrystalline polyamine copper dinitrate complexes investigated by photoacoustic and EPR spectroscopy. J. Appl. Phys. 90: 1436-1441. doi:10.1063/1.1372660
  10. Guskos N, Typek J, Papadopoulos G J, Maryniak M and Aidinis K, 2005. The linewidths and integrated intensities of the d-d transitions in photoacoustic spectra of polyamine copper(II) complexes. Materials Science-Poland 23: 955-960.
  11. Wong W Y, Flik G, Groenen P M W, Swinkels D W, Thomas Ch M G, Copius-Peerebom J H J, Merkus H W M, Steegers-Theunissen R P M, 2001. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod. Toxicol. 15: 131-136 doi:10.1016/S0890-6238(01)00113-7
  12. Guskos N, Papadopoulos G, Majszczyk J, Typek J, Wabia M, Likodimos V, Paschalidis D G, Tossidis I A and Aidinis K, 2003. Charge transfer and f-f transition studied by photoacoustic spectroscopy of [R(NO3)2(PicBH)2]NO3 and [R(NO3)3 (PicBH)2] complexes (R – rare earth ion). Acta Phys. Pol. A 103: 301-313.
  13. Guskos N, Paschalidis D G, Majszczyk J, Typek J and Maryniak M, 2005. Photoacoustic study of a new neodymium(III) hydrozone complex. Materials Science-Poland 23: 1030-1034.
  14. Papadopoulos G J and Mair G L R, 1992. Amplitude and phase study of the photoacoustic effect . J. Phys. D: Appl. Phys. 25: 722-729. doi:10.1088/0022-3727/25/4/019
  15. Guskos N, Papadopoulos G P, Likodimos V, Patapis S, Yarmis D, Przepiera A and Przepiera K, Majszczyk J, Typek J, Wabia M, Aidinis K and Drazek Z, 2002. Photoacoustic, EPR and electrical conductivity investigations of three synthetic mineral pigments: hematite, goethite and magnetite. Mat. Research Bull. 37: 1051-1061. doi:10.1016/S0025-5408(02)00742-0
  16. Duck F A. Physical Properties of Tissue: a Comprehensive Reference Book. San Diego: Academic Press (1990).
  17. Roggan A, Friebel M, Dörschel K, Hahn A and Müller G, 1999. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biom. Opt. 4: 36-46. doi:10.1117/1.429919 PMid:23015168 
  18. Graff R, Dassel A C M, Koelink M H, De Mul F F M, Aarmoudse J G and Zijlstra W G, 1993. Optical properties of human dermis in vitro and in vivo. Appl. Optics 32: 435-447. doi:10.1364/AO.32.000435
  19. Matcher S J, Cope M and Delpy D T, 1997. In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. Appl. Optics 36: 386-396. doi:10.1364/AO.36.000386 PMid:18250686 
  20. Lademann J, Richter H, Sterry W and Priezzhev A V, 2001. Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood samples, Proc. SPIE 4263: 106-111. doi:10.1117/12.429328
  21. Adams M J, Highfield J G and Kirkbright G F, 1980. Determination of the absolute quantum efficiency of luminescence of solid materials employing photoacoustic spectroscopy. Anal. Chem. 52: 1260-1264. doi:10.1021/ac50058a024
  22. Lenci F, and Colombetti G, 1978. Photobehavior of Microorganisms: A Biophysical Approach. Ann. Rev. of Biophys. and Bioeng. 7: 341-346. doi:10.1146/annurev.bb.07.060178.002013 PMid:96724 
(c) Ukrainian Journal of Physical Optics