Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Bistable optical system based on hysteresis in the reflectivity of graphene-on-Pb(ZrxTi1–x)O3 
Download this article

Strikha M. V.

Abstract. We analyse a model describing hysteretic behaviour of the reflectivity R for the system ‘graphene–Pb(ZrxTi1–x)O3 (PZT) ferroelectric substrate–gate’ with a gate voltage variation, which takes into account trapping of electrons into the graphene–PZT interface states. We demonstrate that the hysteresis in the R parameter can be observed experimentally for the telecommunication-range radiation (the wavelength λ = 1.55 μm) at low gate voltages and, moreover, the phenomenon can be used while creating fast bistable systems for the novel non-volatile memory devices with on-chip optical interconnection

Keywords: graphene, PZT, reflectivity, hysteresis, memory

PACS: 78.67.Wj, 42.79.Fm, 77.84.-s 
UDC: 535.346, 537.226.4
Ukr. J. Phys. Opt. 13 45-50
doi: 10.3116/16091833/13/1/45/2012
Received: 26.01.2012

Анотація. Проаналізовано модель гістерезисної поведінки коефіцієнта відбивання системи „графен–сегнетоелектрична підкладка Pb(ZrxTi1–x)O3 (PZT)–затвор” зі змінною напругою на затворі з урахуванням захоплення електронів на інтерфейсні стани на межі графен–сегнетоелектрик. Показано, що такий гістерезис можна спостерігати експериментально для випромінювання телекомунікаційного діапазону (λ = 1,55 мкм) для низьких напруг на затворі та можна використати у створенні швидкодійної бістабільної системи для нових пристроїв енергонезалежної пам’яті з оптичними з’єднаннями на чіпах.

 

REFERENCES
  1. Strikha M V, 2012. Graphene on ferroelectric substrate: memory devices and modulators of radiation. A review. Sensor Electronics and Microsystem Technologies. 9 (to be published). 
  2. Rouquette J, Haines J, Bornand V, Pintard M, Papet Ph, Bousquet C, Konczewicz L, Gorelli F and Hull S, 2004. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate. Phys. Rev. B. 70: 014108. DOI:10.1103/PhysRevB.70.014108
  3. Hong X, Hoffman J, Posadas A, Zou K, Ahn C H and Zhu J, 2010. Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O3 . Appl. Phys. Lett. 97: 033114. DOI:10.1063/1.3467450
  4. Yi Zheng, Guang-Xin Ni, Sukang Bae, Chun-Xiao Cong, Orhan Kahya, Chee-Tat Toh, Hye Ri, Kim, Danho Im, Ting Yu, Jong Hyun Ahn, Byung Hee Hong and Barbaros Ozyilmaz, 2011. Wafer-scale graphene/ferroelectric hybrid devices for low voltage electronics. Europ. Phys. Lett. 93: 17002. DOI:10.1209/0295-5075/93/17002
  5. Emil B Song, Bob Lian, Sung Min Kim, Sejoon Lee, Tien-Kan Chung, Minsheng Wang, Caifu Zeng, Guangyu Xu, Kin Wong, Yi Zhou, Haider I. Rasool, David H. Seo, Hyun-Jong Chung, Jinseong Heo, Sunae Seo and Kang L. Wang, 2011. Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99: 042109. DOI:10.1063/1.3619816
  6. Strikha MV, 2011. Modulation of a mid-IR radiation by a gated graphene on ferroelectric substrate. Ukr. J. Phys. Opt. 12: 162–165. DOI:10.3116/16091833/12/4/161/2011
  7. Strikha M V, 2012. Mechanism of anti-hysteresis behavior in graphene-on-Pb(ZrxTi1-x)O3 substrate resistance. JETP Lett. 95 (to be published). 
  8. Das Sarma S, Shaffique Adam, Hwang E H and Enrico Rossi, 2011. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83: 407–470. DOI:10.1103/RevModPhys.83.407
  9. Nair R R, Blake P, Grigorenko AN, Novoselov KS, Brooth TJ, Stauber T, Peres N M R and Geim A K, 2008. Fine structure constant defines visual transparency of grapheme. Science. 320: 1308. DOI:10.1126/science.1156965PMid:18388259
  10. Strikha M V and Vasko F T, 2010. Electro-optics of graphene: Field-modulated reflection and birefringence. Phys. Rev. B. 81: 115413. DOI:10.1103/PhysRevB.81.115413
  11. Orlita M and Potemski M, 2010. Dirac electronic states in graphene systems: optical spectroscopy studies. Topical review. Semicond. Sci. Technol. 25: 063001. DOI:10.1088/0268-1242/25/6/063001
  12. Ming Liu, Xiaobo Yin, Erik Ulin-Avila, Baisong Geng, Thomas Zentgraf, Long Ju, Feng Wang and Xiang Zhang, 2011. A graphene-based broadband optical modulator. Nature. 474: 64–67. DOI:10.1038/nature10067PMid:21552277
  13. Strikha M V and Vasko F T, 2011. Carrier-induced modulation of light by a gated graphene. J. Appl. Phys. 110: 083106. DOI:10.1063/1.3653837
  14. Ohtomo A, Muller D A, Grazul J L and Hwang H Y, 2002. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature. 419: 378–380. DOI:10.1038/nature00977PMid:12353030
(c) Ukrainian Journal of Physical Optics