Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Electrogyration effect in lead germanate crystal family.
2. The case of crystals doped with Li, Eu, La, Nd and (Li, Bi)
1Shopa Y.I., 1Kushnir O.S., 2Adamenko D., 1Shopa R.Y., 1Dzyubanski V.S., 2Vlokh R.O., 2Vlokh O.G.

1Lviv Ivan Franko National University, 8 Kyrylo and Mefodiy St.,  79005 Lviv, Ukraine
2 Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine, E-mail: vlokh@ifo.lviv.ua 

download full version

Temperature dependences of spontaneous and induced electrogyration are studied for the crystals of lead germanate doped with Li, Eu, La, Nd and (Li, Bi). Critical fluctuations observed in the optical parameters near ferroelectric phase transition point are explained in frame of the first fluctuation correction to the Landau theory and the critical indices governing the order parameter are found. It is shown that the doped crystals may be promising for practical applications owing to their large induced electrogyration coefficients

Keywords: lead germanate crystals, ferroelectric phase transition, optical activity, electrogyration, critical fluctuations

PACS: 42.25.Bs, 87.15.Mi, 87.64.Ni
Ukr. J. Phys. Opt. 10 71-81 
doi: 10.3116/16091833/10/2/71/2009
Received: 17.02.2009
 

Анотація. У роботі вивчено температурні залежності спонтанної та індукованої електрогірації кристалів германату свинцю з домішками Li, Eu, La, Nd і (Li, Bi). Спостережувані в оптичних параметрах критичні флуктуації поблизу точки сегнетоелектричного фазового переходу пояснено в рамках підходу першої флуктуаційної поправки до теорії Ландау. Визначено критичні індекси параметра порядку. Показано, що леговані кристали перспективні для практичних застосувань завдяки великим коефіцієнтам індукованої електрогірації.

REFERENCES
  1. Vazhenin V A, Rumyantsev E L, Artemov M Yu and Starichenko K M, 1998. Mecha-nisms of EPR line broadening in Pb5Ge3O11 near a structural transition. 40: 293–298.
  2. Novik V K and Gavrilova N D, 2000. Low-temperature pyroelectricity. Phys. Sol. State. 42: 991–1008. doi:10.1134/1.1131338
  3. Trubitsyn M P and Pozdeev V G, 2000. The effect of off-center Cu2+ ions on the phase transition in lead germanate crystals. Phys. Sol. State. 42: 2254–2257. doi:10.1134/1.1332148
  4. Rolli R, Samoggia G, Bettinelli M, Speghini A and Wachtler M, 2001. Site-selective spectroscopy of Er3+ doped lead germanate glasses. J. Non-Cryst. Solids. 288: 114–120. doi:10.1016/S0022-3093(01)00606-8
  5. Adamenko D, Klymiv I, Duda V M, Vlokh R and Vlokh O, 2008. Electrogyration and Faraday rota-tion in pure and Cr-doped lead germanate crystals. J. Phys.: Condens. Mat-ter. 20: 075201. doi:10.1088/0953-8984/20/7/075201
  6. Iwasaki H, Miyazawa S, Koizumi H, Sugii K and Niizeki N, 1972. Ferroelectric and op-tical proper-ties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys. 43: 4907–4915. doi:10.1063/1.1661044
  7. Vlokh O G. Spatial dispersion phenomena in parametric crystal optics. Lviv: Vyshcha Shkola (1984).
  8. Kostova E M, Ivanchev N R and Kostov M K, 1986. Polarimeter with electrogyratory modulators. Bulgarian Phys. J. 13: 167–169.
  9. Kostova E M and Kostov M K, 1986. Electrogyratory communication device. Opt. Commun. 60: 211–212. doi:10.1016/0030-4018(86)90426-8
  10. Shopa Y, Adamenko D, Vlokh R and Vlokh O, 2007. Electrogyration effect in lead germanate crys-tal family. 1. Electrogyration in solid solutions on the basis of lead germa-nate crystals. Ukr. J. Phys. Opt. 8: 197–208.
  11. Lazko L A, Monia V G, Sergayuk V A and Shopa Y I, 1982. Influence of Li, Eu, La and Nd impu-rities on the electrogyration properties of lead germanate. Visnyk Lviv Univer-sity, Ser. Fiz. 16: 35–40.
  12. Vlokh O G, Sinyakov E V, Lazko L A and Monia V G, 1978. Spontaneous and induced electrogy-ration in (Pb1-xBix)5Ge3O11 crystals. Fiz. Tverd. Tela. 20: 2098–2100.
  13. Shopa Y I and Kravchuk M O, 1996. Study of optical activity in La3Ga5SiO14 with high-accuracy polarimetric methods. Phys. Stat. Solidi (a). 158: 275–280.
  14. Shopa Y I, 2001. High-accuracy polarimetry and its applications. Ukr. J. Phys. Opt. 2: 58–75. doi:10.3116/16091833/2/2/58/2001
  15. Kushnir O S, Shopa R Y and Vlokh R O, 2008. Optical studies of order parameter fluc-tuations in solid solutions based on lead germanate crystals. Ukr. J. Phys. Opt. 9: 169–181. doi:10.3116/16091833/9/3/169/2008
  16. Strukov B A and Levanyuk A P. Physical fundamentals of ferroelectric phenomena. Moscow: Nauka (1983).
  17. Ivanov N R, Levanyuk A P, Minyukov S A, Kroupa J and Fousek J, 1990. The critical temperature dependence of birefringence near the normal-incommensurate phase transi-tion in Rb2ZnBr4. J. Phys.: Condens. Matter. 2: 5777–5786. doi:10.1088/0953-8984/2/26/015
  18. Aizu K, 1964. Irregular ferroelectrics. Phys. Rev. 134: A701–A712. doi:10.1103/PhysRev.134.A701
  19. Smolensky G A, 1970. Physical phenomena in ferroelectrics with diffused phase transi-tions. J. Phys. Soc. Japan, Suppl. 28: 26–37.
  20. Lutsiv-Shumski L P, Serkiz R Y and Shopa Y I, 2000. Temperature dependences of opti-cal activ-ity and electrogyration in solid solution crystals. Materials of 2nd International Smakula’s Symposium (Ternopol, Ukraine, 2000). pp. 170–172.
  21. Satija S and Cowley R A, 1982. Neutron and Raman scattering at structural phase transi-tion. Phys. Rev. B. 25: 6765–6770. doi:10.1103/PhysRevB.25.6765
  22. Shopa Y, Lutsiv-Shumski L and Serkiz R, 2001. Temperature dependences of optical activity and electrogyration in Pb5(Ge1-xSix)3O11 and NaBi(Mo1-xWxO4)2 crystals. Fiz. Zbirnyk NTSh. 4: 148–153.
(c) Ukrainian Journal of Physical Optics