Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
All-optical logic gates based on nonlinear dielectric films
Dzedolik I.V., Lapayeva S.N., Rubass A.F.

Taurida V. Vernadsky National University, 4 Vernadsky Ave., 95007 Simferopol, Ukraine

download full version

We analyze interaction of two nonlinear waves in thin amorphous dielectric film with reflecting edges. All-optical logic gates “AND”, “OR” and “XOR”, which are based on the dielectric film and involve no semiconductor components, are simulated both analytically and numerically.

Keywords: non-linear wave, dielectric film, optical logic gate

PACS: 42.30.-d, 42.65.-k, 42.70.Nq
UDC : 535.4
Ukr. J. Phys. Opt. 9187-196 
doi: 10.3116/16091833/9/3/187/2008
Received: 15.04.2008

  1. Feitelson D G. Optical computing: a survey for computer scientists. Cambridge: MIT Press (1988).
  2. Arrathoon R, Ed. Optical computing: digital and symbolic. New York: Marcel Deccer (1989).
  3. McAulay A D. Optical computer architectures: the application of optical concepts to next generation computer. New York: John Wiley & Sons (1991).
  4. Meindl J D, 1995. Low power microelectronics: retrospect and prospect. Proc. IEEE. 83: 619–635.

  5. doi:
  6. Nielsen M A and Chang I L. Quantum computation and quantum information. Cambridge: Cambridge Univ. Press (2000).
  7. Kivshar Yu S and Agrawal G P. Optical Solitons: From Fibers to Photonic Crystals. Academic Press (2003).
  8. Cuesta-Soto F, Martinez A, Garcia J, Ramos F, Sanchis P, Blasco J and Marti J, 2004. All-optical switching structure based on a photonic crystal directional coupler. Opt. Exp. 12(1): 161–167.

  9. doi:
  10. Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E and Tanabe T, 2005. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Exp. 13(7): 2678–2687.

  11. doi:
  12. Zhu Z-H, Ye W-M, Ji J-R, Yuan X and Zen C, 2006. High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Exp. 14(5): 1783–1788.

  13. doi:
  14. Fujisawa T and Koshiba M, 2006. All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B. 23(4): 684–691.

  15. doi:
  16. Dzedolik I V, 2007. Optical logic gate ‘AND’, controllable photon crystal. IEEE Catalog No. 07EX1829C. ISBN 1-4244-1322-2. Library of Congress. 2007927064: 23.
  17. Dzedolik I V, 2007. One-dimensional controllable photonic crystal. J. Opt. Soc. Am. B 24(10): 2741–2745.

  18. doi:
  19. Dzedolik I V. Polaritons in optical fibers and dielectric resonators. Simferopol: DIP (2007).
  20. Zou H, Liang G-Q and Wang H-Z, 2008. Efficient all-optical dual-channel switches, logic gates, half-adder, and half-subtracter in a one-dimensional photonic heterostructure. J. Opt. Soc. Am. B. 25(3): 351–360.

  21. doi:
  22. Walker A C, 1986. Application of bistable optical logic gate arrays to all-optical digital parallel processing. Appl. Opt. 25(10): 1578–1585.
  23. Craig R G, Buller G S, Tooley F A P, Smith S D, Walker A C and Wherrett B S, 1990. All-optical programmable logic gate. Appl. Opt. 29(14): 2148–2152.
  24. Normandin R, 1986. All-optical, fiber-optic modulator and logic gate using nonlinear refraction and absorption. Opt. Lett. 11(11): 751–753.
  25. Bhardwaj A, Hedekvist P O and Vahala K, 2001. All-optical logic circuits based on polarization properties of nondegenerate four-wave mixing. J. Opt. Soc. Am. B. 18(5): 657–665.

  26. doi:
  27. Scheuer J and Orenstein M, All-optical gates facilitated by soliton interactions in a multilayered Kerr medium. J. Opt. Soc. Am. B. 22(6): 1260–1267.

  28. doi:
  29. Shcherbakov A S, Tepichin Rodriguez E and Aguirre López A, 2004. All-optical performing of logic-based operations due to a two-photon light scattering. Revista Mexicana de Fisica. 50(2): 140–148.
  30. Puddu E, Allevi A and Andreoni A, 2004. All-optical logic operations by means of two interlinked interactions in a single crystal. J. Opt. Soc. Am. B. 21(19): 1839–1847.

  31. doi:
  32. Zaghloul Y A and Zaghloul A R M, 2006. Unforced polarization-based optical implementation of binary logic. Opt. Exp. 14(16): 7252–7269.

  33. doi:
  34. Zaghloul Y A and Zaghloul A R M, 2006. Complete all-optical processing polarization-based binary logic gates and optical processors. Opt. Exp. 14(21): 9879–9895.

  35. doi:
  36. Handschy M A, Johnson K M, Gathey W T and Pagano-Stauffer L A, 1987. Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals. Opt. Lett. 12(8): 611–613.
  37. Takizawa K, Kikuchi H, Aida T and Okada M, 1989. Optical parallel logic gate using a Pockels readout optical modulator and twisted nematic liquid-crystal cells. Opt. Lett. 14(4): 208–210.
  38. Wang Y-Y, Chen J-Y and Chen L-W, 2007. Optical switches based on partial band gap and anomalous refraction in photonic crystals modulated by liquid crystals. Opt. Exp. 15(16): 10033–10040.

  39. doi:
  40. Zhao C, Zhang X, Liu H, Liu D and Huang D, 2005. Tunable all-optical NOR gate at 10 Gb/s based on SOA fiber ring laser. Opt. Exp. 13(8): 2793–2797.

  41. doi:
  42. Xu Q and Lipson M, 2007. All-optical logic gates based silicon micro-ring resonators. Opt. Exp. 15(3): 924–929. 

  43. doi:
  44. Wu Y-D, Shih T-T and Chen M-H, 2008. New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt. Exp. 16(1): 248–257.

  45. doi:
  46. Stockton J, Armen M and Mabuchi H, 2002. Programmable logic devices in experimental quantum optics. 19(12): 3019–3027.
  47. Valiev K A, 2005. Quantum computers and quantum computing. Usp. Fiz. Nauk. 175(1): 1–39.

  48. doi:
  49. Milburn G, 2007. Quasi-probability methods for multimode conditional optical gates. J. Opt. Soc. Am. B. 24(2): 167–170.

  50. doi:
  51. White A G, Gilchrist A, Pryde G J, O'Brien J L, Bremner M J and Langford N K, 2007. Measuring two-qubit gates. J. Opt. Soc. Am. B. 24(2): 172–183.

  52. doi:
  53. Kieling K, Gross D and Eisert J, 2007. Minimal resources for linear optical one-way computing. J. Opt. Soc. Am. B. 24(2): 184–188.

  54. doi:
  55. Berry D W, Lvovsky A I and Sanders B C, Efficiency limits for linear optical processing of single photons and single-rail qubits. J. Opt. Soc. Am. B. 24(2): 189–197.

  56. doi:
  57. Utsunomiya S, Master C P, Yamamoto Y, 2007. Algorithm-based analysis of collective decoherence in quantum computation. J. Opt. Soc. Am. B. 24(2): 198–208.

  58. doi:
  59. Franson J D, Pittman T B and Jacobs B C, 2007. Zeno logic gates using microcavities. J. Opt. Soc. Am. B. 24(2): 209–213.

  60. doi:
  61. Soudagar Y, Bussieres F, Berlin G, Lacroix S, Fernandez J M and Godbout N, 2007. Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B. 24(2): 226–230.

  62. doi:
  63. Barak R and Ben-Aryeh Y, 2007. Quantum fast Fourier transform and quantum computation by linear optics. J. Opt. Soc. Am. B. 24(2): 231–240.

  64. doi:
  65. Guney D O and Meyer D A, 2007. Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity. J. Opt. Soc. Am. B. 24(2): 283–294.

  66. doi:
  67. Deng L-P, Wang H and Wang K, 2007. Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. J. Opt. Soc. Am. B 24(9): 2517–2520.

  68. doi:
  69. Muller D A B, 2007. Fundamental limit for optical components. J. Opt. Soc. Am. B. 24(19): A1–A18.

  70. doi:
  71. Dzedolik I V, 2007. Optical logic gate “XOR”, Patent of Ukraine. G02F 3/00 No 26823. 
  72. Dzedolik I V, 2007. Optical logic gate “AND”, Patent of Ukraine. G02F 3/00 No 27194. 

  73. Dzedolik I V, 2007. Optical logic gate “OR”, Patent of Ukraine. G02F 3/00 No 27196.
(c) Ukrainian Journal of Physical Optics