Ukrainian Journal of Physical Optics 

Home page

Other articles 

in this issue
All-optical logic gates based on nonlinear dielectric films
Order this article

Dzedolik I.V., Lapayeva S.N. and Rubass A.F.

We analyze interaction of two nonlinear waves in thin amorphous dielectric film with reflecting edges. All-optical logic gates “AND”, “OR” and “XOR”, which are based on the dielectric film and involve no semiconductor components, are simulated both analytically and numerically.

Keywords: non-linear wave, dielectric film, optical logic gate

PACS: 42.30.-d, 42.65.-k, 42.70.Nq
UDC : 535.4
Ukr. J. Phys. Opt. 9187-196 
doi: 10.3116/16091833/9/3/187/2008
Received: 15.04.2008

  1. Feitelson D G. Optical computing: a survey for computer scientists. Cambridge: MIT Press (1988).
  2. Arrathoon R, Ed. Optical computing: digital and symbolic. New York: Marcel Deccer (1989).
  3. McAulay A D. Optical computer architectures: the application of optical concepts to next generation computer. New York: John Wiley & Sons (1991).
  4. Meindl J D, 1995. Low power microelectronics: retrospect and prospect. Proc. IEEE. 83: 619–635.

  5. doi:
  6. Nielsen M A and Chang I L. Quantum computation and quantum information. Cambridge: Cambridge Univ. Press (2000).
  7. Kivshar Yu S and Agrawal G P. Optical Solitons: From Fibers to Photonic Crystals. Academic Press (2003).
  8. Cuesta-Soto F, Martinez A, Garcia J, Ramos F, Sanchis P, Blasco J and Marti J, 2004. All-optical switching structure based on a photonic crystal directional coupler. Opt. Exp. 12(1): 161–167.

  9. doi:
  10. Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E and Tanabe T, 2005. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Exp. 13(7): 2678–2687.

  11. doi:
  12. Zhu Z-H, Ye W-M, Ji J-R, Yuan X and Zen C, 2006. High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Exp. 14(5): 1783–1788.

  13. doi:
  14. Fujisawa T and Koshiba M, 2006. All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B. 23(4): 684–691.

  15. doi:
  16. Dzedolik I V, 2007. Optical logic gate ‘AND’, controllable photon crystal. IEEE Catalog No. 07EX1829C. ISBN 1-4244-1322-2. Library of Congress. 2007927064: 23.
  17. Dzedolik I V, 2007. One-dimensional controllable photonic crystal. J. Opt. Soc. Am. B 24(10): 2741–2745.

  18. doi:
  19. Dzedolik I V. Polaritons in optical fibers and dielectric resonators. Simferopol: DIP (2007).
  20. Zou H, Liang G-Q and Wang H-Z, 2008. Efficient all-optical dual-channel switches, logic gates, half-adder, and half-subtracter in a one-dimensional photonic heterostructure. J. Opt. Soc. Am. B. 25(3): 351–360.

  21. doi:
  22. Walker A C, 1986. Application of bistable optical logic gate arrays to all-optical digital parallel processing. Appl. Opt. 25(10): 1578–1585.
  23. Craig R G, Buller G S, Tooley F A P, Smith S D, Walker A C and Wherrett B S, 1990. All-optical programmable logic gate. Appl. Opt. 29(14): 2148–2152.
  24. Normandin R, 1986. All-optical, fiber-optic modulator and logic gate using nonlinear refraction and absorption. Opt. Lett. 11(11): 751–753.
  25. Bhardwaj A, Hedekvist P O and Vahala K, 2001. All-optical logic circuits based on polarization properties of nondegenerate four-wave mixing. J. Opt. Soc. Am. B. 18(5): 657–665.

  26. doi:
  27. Scheuer J and Orenstein M, All-optical gates facilitated by soliton interactions in a multilayered Kerr medium. J. Opt. Soc. Am. B. 22(6): 1260–1267.

  28. doi:
  29. Shcherbakov A S, Tepichin Rodriguez E and Aguirre López A, 2004. All-optical performing of logic-based operations due to a two-photon light scattering. Revista Mexicana de Fisica. 50(2): 140–148.
  30. Puddu E, Allevi A and Andreoni A, 2004. All-optical logic operations by means of two interlinked interactions in a single crystal. J. Opt. Soc. Am. B. 21(19): 1839–1847.

  31. doi:
  32. Zaghloul Y A and Zaghloul A R M, 2006. Unforced polarization-based optical implementation of binary logic. Opt. Exp. 14(16): 7252–7269.

  33. doi:
  34. Zaghloul Y A and Zaghloul A R M, 2006. Complete all-optical processing polarization-based binary logic gates and optical processors. Opt. Exp. 14(21): 9879–9895.

  35. doi:
  36. Handschy M A, Johnson K M, Gathey W T and Pagano-Stauffer L A, 1987. Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals. Opt. Lett. 12(8): 611–613.
  37. Takizawa K, Kikuchi H, Aida T and Okada M, 1989. Optical parallel logic gate using a Pockels readout optical modulator and twisted nematic liquid-crystal cells. Opt. Lett. 14(4): 208–210.
  38. Wang Y-Y, Chen J-Y and Chen L-W, 2007. Optical switches based on partial band gap and anomalous refraction in photonic crystals modulated by liquid crystals. Opt. Exp. 15(16): 10033–10040.

  39. doi:
  40. Zhao C, Zhang X, Liu H, Liu D and Huang D, 2005. Tunable all-optical NOR gate at 10 Gb/s based on SOA fiber ring laser. Opt. Exp. 13(8): 2793–2797.

  41. doi:
  42. Xu Q and Lipson M, 2007. All-optical logic gates based silicon micro-ring resonators. Opt. Exp. 15(3): 924–929. 

  43. doi:
  44. Wu Y-D, Shih T-T and Chen M-H, 2008. New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt. Exp. 16(1): 248–257.

  45. doi:
  46. Stockton J, Armen M and Mabuchi H, 2002. Programmable logic devices in experimental quantum optics. 19(12): 3019–3027.
  47. Valiev K A, 2005. Quantum computers and quantum computing. Usp. Fiz. Nauk. 175(1): 1–39.

  48. doi:
  49. Milburn G, 2007. Quasi-probability methods for multimode conditional optical gates. J. Opt. Soc. Am. B. 24(2): 167–170.

  50. doi:
  51. White A G, Gilchrist A, Pryde G J, O'Brien J L, Bremner M J and Langford N K, 2007. Measuring two-qubit gates. J. Opt. Soc. Am. B. 24(2): 172–183.

  52. doi:
  53. Kieling K, Gross D and Eisert J, 2007. Minimal resources for linear optical one-way computing. J. Opt. Soc. Am. B. 24(2): 184–188.

  54. doi:
  55. Berry D W, Lvovsky A I and Sanders B C, Efficiency limits for linear optical processing of single photons and single-rail qubits. J. Opt. Soc. Am. B. 24(2): 189–197.

  56. doi:
  57. Utsunomiya S, Master C P, Yamamoto Y, 2007. Algorithm-based analysis of collective decoherence in quantum computation. J. Opt. Soc. Am. B. 24(2): 198–208.

  58. doi:
  59. Franson J D, Pittman T B and Jacobs B C, 2007. Zeno logic gates using microcavities. J. Opt. Soc. Am. B. 24(2): 209–213.

  60. doi:
  61. Soudagar Y, Bussieres F, Berlin G, Lacroix S, Fernandez J M and Godbout N, 2007. Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B. 24(2): 226–230.

  62. doi:
  63. Barak R and Ben-Aryeh Y, 2007. Quantum fast Fourier transform and quantum computation by linear optics. J. Opt. Soc. Am. B. 24(2): 231–240.

  64. doi:
  65. Guney D O and Meyer D A, 2007. Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity. J. Opt. Soc. Am. B. 24(2): 283–294.

  66. doi:
  67. Deng L-P, Wang H and Wang K, 2007. Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. J. Opt. Soc. Am. B 24(9): 2517–2520.

  68. doi:
  69. Muller D A B, 2007. Fundamental limit for optical components. J. Opt. Soc. Am. B. 24(19): A1–A18.

  70. doi:
  71. Dzedolik I V, 2007. Optical logic gate “XOR”, Patent of Ukraine. G02F 3/00 No 26823. 
  72. Dzedolik I V, 2007. Optical logic gate “AND”, Patent of Ukraine. G02F 3/00 No 27194. 

  73. Dzedolik I V, 2007. Optical logic gate “OR”, Patent of Ukraine. G02F 3/00 No 27196.
(c) Ukrainian Journal of Physical Optics