Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Spin polarization of dilute magnetic semiconductors under optical excitation of impurity levels
1Gorley P.M., 1Mysliuk O.M., 2Vieira M., 1,3Horley P.P., 4Dugaev V.K., 5Barnas J.

1Department of Electronics and Energy Engineering, Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky St., 58012 Chernivtsi, Ukraine
2Dept. de Engenharia Electrotécnica, ISEL, Rua Conselheiro Emídio Navarro, 1950-062 Lisbon, Portugal
3CFIF, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
4Department of Mathematics and Applied Physics, Rzeszów University of Technology, 6 Powstanców Warszawy St., 35-959 Rzeszów, Poland
5Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznan, Poland

download full version

We use the method based on kinetic equations to analyze the influence of intensity and polarization of incident light, concentration of impurities with unfilled 3d or 4f shells and long-term relaxation times of conduction electrons and magnetic ions upon the degree of spin polarization. In case of spatially inhomogeneous stationary states, the distribution of band electrons is shown to oscillate in space, with a transition to spatially homogeneous distribution for infinitely thick sample. It is also demonstrated that the maximum spin polarization degree he for the band electrons can be reached for the thickness of semiconductor film comparable to the diffusion length for the minority carriers.

Keywords: optical excitation, spin polarization, spintronics, diluted magnetic semi-conductors

PACS: 72.25.Fe, 72.25.Rb, 72.25.-b, 78.20.Bh, 78.40.Fy
UDC: 535.568
Ukr. J. Phys. Opt. 9 60-71 
doi: 10.3116/16091833/9/1/60/2008
Received: 18.12.2007

REFERENCES
1. Meier F. and Zakharchenya B. P. Optical Orientation. Amsterdam: North-Holland (1984).
2. Ganichev S and Prettl W, 2003. Spin photocurrents in quantum wells. J. Phys.: Condens. Matter. 15: R935 - R983.
        doi:10.1088/0953-8984/15/20/204 http://dx.doi.org/10.1088/0953-8984/15/20/204
3. Zutic I, Fabian S and Das Sarma S, 2004. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76: 323-410.
        doi:10.1103/RevModPhys.76.323 http://dx.doi.org/10.1103/RevModPhys.76.323
4. Awschalom D.D. and Samarth N. Semiconductor Spintronics and Quantum Computation. Berlin: Springer (2002).
5. Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M, 2001. Spintronics: A spin-based electronics vision for the future. Science 294: 1488-1495.
        doi:10.1126/science.1065389 http://dx.doi.org/10.1126/science.1065389
6. Schmidt G, Ferrand D, Molenkamp L W, Filip AT and van Wees B J, 2000. Fundamental obsta-cle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62: R4790-R4793.
        doi:10.1103/PhysRevB.62.R4790 http://dx.doi.org/10.1103/PhysRevB.62.R4790
7. Fabian J and Das Sarma S J, 1999. Spin relaxation of conduction electrons. J.Vac. Sci. Technol. B 17: 1708-1715.
        doi:10.1116/1.590813 http://dx.doi.org/10.1116/1.590813
8. Vadim I Puller, Lev G Mourokh, Norman J Horing, and Anatoly Yu Smirnov, 2003. Electron spin relaxation in a semiconductor quantum well. Phys. Rev. B 67: 155309-155318.
        doi:10.1103/PhysRevB.67.155309 http://dx.doi.org/10.1103/PhysRevB.67.155309
9. Lifshitz E. M. and Pitaevskii L. P. Physical Kinetics. Oxford: Pergamon (1997).
10. Picoli G, Gravey P, Ozcul C and Vieux V, 1989. Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: A new mechanism of resonance. J. Appl. Phys. 66: 3798-3813.
        doi:10.1063/1.344043 http://dx.doi.org/10.1063/1.344043
11. Zutic I, Fabian J and Das Sarma S, 2001. Spin injection through the depletion layer: A theory of spin-polarized p-n junctions and solar cells. Phys. Rev. B 64: 121201-121205.
        doi:10.1103/PhysRevB.64.121201 http://dx.doi.org/10.1103/PhysRevB.64.121201
12. Zutic I, Fabian J and Das Sarma S, 2001. Proposal for a spin polarized solar battery. Appl. Phys. Lett. 79: 1558-1560.
        doi:10.1063/1.1399002 http://dx.doi.org/10.1063/1.1399002
13. Gorley PM, Dugaev VK, Barnas J, Horley PP, Mysliuk OM, 2007. Spin polarization and relaxa-tion in a semiconductor with impurity absorption of circularly polarized light. J. Phys.: Condens. Matter. 19: 266205-266214.
        doi:10.1088/0953-8984/19/26/266205 http://dx.doi.org/10.1088/0953-8984/19/26/266205
14. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K, 2000. Elec-tric-Field control of ferromagnetism. Nature 408: 944-946.
        doi:10.1038/35050040 http://dx.doi.org/10.1038/35050040
15. Boukari H, Kossacki P, Bertolini M, Ferrand D, Cibert J, Tatarenko S, Wasiela A, Gaj J A and Dietl T, 2002. Light and Electric Field Control of Ferromagnetism in Magnetic Quantum Struc-tures. Phys. Rev. Lett. 88: 207204-207208.
        doi:10.1103/PhysRevLett.88.207204 http://dx.doi.org/10.1103/PhysRevLett.88.207204
16. Torrance JB, Shafer MW and McGuire T R, 1972. Bound Magnetic Polarons and the Insulator-Metal Transition in EuO. Phys. Rev. Lett. 29: 1168-1171.
        doi:10.1103/PhysRevLett.29.1168 http://dx.doi.org/10.1103/PhysRevLett.29.1168
17. Dietl T and Spalek J, 1983. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron in dilute magnetic semiconductors. Phys. Rev. B 28: 1548-1563.
        doi:10.1103/PhysRevB.28.1548 http://dx.doi.org/10.1103/PhysRevB.28.1548
18. Gorley P. M., Dugaev V. K., Barnas J., Vieira M., Horley P. P. and Mysliuk O. M. Novel Semi-conductor Materials for Room-Temperature Ferromagnetism. Warrendale: Materials Research Society (2007).
19. Ippolitova G K, Omel’yanovski E M, Pavlov N M, Nashel’skiy A Ya and Yakobson S V, 1977. Behaviour of  Fe impurity in InP and influence of covalence on the spectrum of EPR  of ion Fe3+  in  Td-symmetry compounds. Fiz. Tekhn. Poluprovod. 11: 1315-1320.
20. Pressel K, Bohnert G, Dörnen A, Kaufmann B, Denzel J, and Thonke K, 1993. Optical study of spin-flip transitions at Fe3+ in InP. Phys. Rev. B 47: 9411-9417.
        doi:10.1103/PhysRevB.47.9411 http://dx.doi.org/10.1103/PhysRevB.47.9411
21. Gorley PM, Horley PP, Gonzalez-Hernandez J Vorobiev YuV, 2002. Self-organization proc-esses in semiconductor under photo-induced Gunn effect. Mater. Sci. Eng. B 88: 286-291.
        doi:10.1016/S0921-5107(01)00887-X http://dx.doi.org/10.1016/S0921-5107(01)00887-X
22. Samarskii A. A. and Gulin A. V. Numerical methods. Moscow: Nauka (1999).
23. Parsons RR, 1969. Band-To-Band Optical Pumping in Solids and Polarized Photoluminescence. Phys. Rev. Lett. 23: 1152-1154.
        doi:10.1103/PhysRevLett.23.1152 http://dx.doi.org/10.1103/PhysRevLett.23.1152
24. Ekimov A I and Safarov V I, 1970. Optical Orientation of Carriers in Interbank Transitions in Semiconductors. Pisma Zhurn. Eksp. Teor. Fiz. 12: 198-201.
25. Pearsall T. P. Properties, Processing and Applications of Indium Phosphide. London: INSPEC, Institution of Electrical Engineers (2000).
26. Haken H. Synergetics. Berlin, Heidelberg, New York: Springer Verlag (1978).

(c) Ukrainian Journal of Physical Optics