Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Physical properties and band structure parameters of solid solutions Hg1-x-yMgxMnyTe
Frasunyak V.M., Gorley P.M., Chupyra S.M.

Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky St., 58012 Chernivtsi, Ukraine

download full version

We present the results of mechanical, electrical, optical and magnetic characterizations of quaternary solid solutions Hg1-x-yMgxMnyTe for the temperature range of 77–300 K. It is shown that introduction of Mn and Mg atoms into the crystalline lattice of HgTe increases microhardness of the alloy. Optimal thermal treatment procedures in the constituent vapours are determined, enabling to control the concentration of active defects and, consecutively, to obtain the materials with different conductivity types and predictable concentrations of carriers. Functional dependences of the band gap and the intrinsic carrier concentration for Hg1-x-yMgxMnyTe on the composition and temperature are obtained.

Keywords: solid solutions, absorption spectra, microhardness, band structure

PACS: 75.40.Cx, 72.80.Ey, 78.40.Fy
UDC: 535.34
Ukr. J. Phys. Opt. 9 27-33 
doi: 10.3116/16091833/9/1/27/2008
Received: 23.11.2007

REFERENCES

1. Baryshev S. N. Properties and applications of narrow-band semiconductors. Kazan: UniPress (2000).
2. Berchenko N. N., Krevs V. E. and Sredin V. G. Semiconductor solid solutions and their applications: Reference tables. Moscow: Voenizdat (1982).
3. Rogalski A, 1991. Hg1-xMnxTe as new infrared detector material. Infrared Phys. 31: 117–166.
        doi:10.1016/0020-0891(91)90064-M http://dx.doi.org/10.1016/0020-0891(91)90064-M
4. Rogalski A, 1989. Hg1-xZnxTe as a potential infrared detector material. Progr. Quant. Electr. 13: 299–353.
        doi:10.1016/0079-6727(89)90008-6 http://dx.doi.org/10.1016/0079-6727(89)90008-6
5. Becla P, 1986. Infrared photovoltaic detectors utilizing Hg1-xMnxTe and Hg1-x-yCdxMnyTe alloys. J. Vac. Sci. and Technol. A4: 2014–2020.
        doi:10.1116/1.574018      http://dx.doi.org/10.1116/1.574018
6. Kamilla S K and Basu S, 2002. New semiconductor materials for magnetoelectronics at room temperature. Bull. Mater. Sci. 25: 541–543.
        doi:10.1007/BF02710546 http://dx.doi.org/10.1007/BF02710546
7. Ostapov SE, 2003. Investigation of the main band properties of HgCdMnZnTe. Proc. SPIE 5065: 370–374.
8. Davydov A B, Noskova L M, Ponikarov B B and Ugodnikova L A, 1980. Magnetic susceptibility of Hg1-xMnxTe alloys. Fiz. Tekhn. Poluprov. 14: 1461–1467.
9. Sher A, Chen A B, Spicer W E and Shih C K, 1985. Effects influencing the structural integrity of semiconductors and their alloys. J. Vac. Sci and Technol. A3: 105–111.
        doi:10.1116/1.573177  http://dx.doi.org/10.1116/1.573177
10. Bell S L and Sen S, 1985. Crystal growth of Cd1-x ZnxTe and its use as a superior substrate for LPE growth of Hg0,8Cd0,2Te. J. Vac. Sci and Technol. A3: 112–115.
        doi:10.1116/1.573179 http://dx.doi.org/10.1116/1.573179

(c) Ukrainian Journal of Physical Optics