Ukrainian Journal of Physical Optics 


Number  1, Volume 4,  2003

Home page
 
 

Other articles 
in this issue


Role of Low-Frequency Modes in the Formation of Dielectric Function of b-Alanine Molecular Crystal

1Dovbeshko G., 2Gridyakina A., 3Romanyuk V.

1Institute of Physics of National Academy of Sciences of Ukraine, 46 Prospect Nauki, Kyiv 03039, Ukraine
2Kiev-Mohyla Academy, 6 Skovoroda str., Kyiv 02070, Ukraine
3Institute for Physics of Semiconductors of National Academy of Sciences of Ukraine, 41 Prospect Nauki, Kyiv 03028, Ukraine

download full version

Dielectric permeability e0 of b-alanine (b-Ala) single crystals is studied with the IR spectroscopy technique and the appropriate calculations. We have calculated the dielectric permeability from the reflectance spectra, using the dispersive analysis and the harmonic multi-oscillator model. The calculations of e0 from the reflectance spectra of (010) b-Ala crystal plane in the 400-4000 cm-1 region have earlier shown that it is impossible to achieve the e0 values experimentally measured in the microwave region (e0c=5.3, e0a=4.0). The calculated data differ two times from those experimentally measured for one of the directions. The polarized IR reflectance spectra of ?-Ala single crystal and the transmittance spectra of the corresponding powder are detected in the 100-5300 cm-1 region. The account for the low-frequency modes (400, 321, 218, 180 cm-1) finally gives a possibility to obtain a good agreement between the calculated and experimental results. The large contribution to e0, which is mainly due to the oscillator at 218 cm-1, is essential only for one of the alternative polarizations (E || the small axis of the (010) crystal plane). It seems to be associated with the H-bonded inter-molecular vibrations.

Key words: Dielectric function, model of non-interacting oscillators, b-alanine.
PACS: 81.10.Dn, 87.64.Rr,42.70.Jk

doi 10.3116/16091833/4/1/27/2003

References
1. Machida K, Kagayama A, Saito Y, Uno T, 1978. Spectr. Acta. 34A: 909-914.
        doi:10.1016/0584-8539(78)80011-7  http://dx.doi.org/10.1016/0584-8539(78)80011-7
2. Takeda M, Javazzo RES, Garfincel D, Scheinberg IH, Edsall JT, 1958. J. Am. Chem. Soc. 80: 3813-3818.
        doi:10.1021/ja01548a002 http://dx.doi.org/10.1021/ja01548a002
3. Shrader D. Raman: Infrared Atlas of Organic Compounds. Verlag Chemic. Weinheim. Germany (1989), 1226p.
4. Leifer A, Lippincott ER, 1957. J. Am.Chem.Soc. 79: 5098-5101.
        doi:10.1021/ja01576a006 http://dx.doi.org/10.1021/ja01576a006
5. Pearson JF, Slifkin MA, 1972. Spectrochim. Acta. 28A: 2403-2413.
6. Berezhinsky LI, Dovbeshko GI, Lisitsa MP, Litvinov GS, 1998. Spectrochimica Acta 54A: 349-358.
7. Dovbeshko GI, Berezhinsky LI, 1998. J. Mol. Structure 450: 121-128.
        doi:10.1016/S0022-2860(98)00420-7 http://dx.doi.org/10.1016/S0022-2860(98)00420-7
8. Berezhinsky LI, Dovbeshko GI, Talik E, Woznjak K, Zawada K, Bukowska I, 2000. Functional Materials 7: 722-725.
9. Dovbeshko G, Berezhinsky L, Pashchuk O, Sekirin I, 2001. Ukr. Fiz. Zhurn. 46: 541-545.
10. Makeev YuG, Motornenko AP, Ermak GP, Dovbeshko GI, 2001. Biophysical Bulletin 2: 83-85.
11. Jose P, Pant LM, 965. Acta Crystallogr. 18: 806-810.
12. Dovbeshko G, Berezhinsky L, Lisitsa MP, Litvinov GS, Mashovets VP, 1994. Quantum Electronics 46: 96-104.
13. Gribov LA Theory of infrared spectra of polymers. Moscow, Nauka (1977), 240p.
14. Litvinov GS, Berezhinsky LI, Lisitsa MP, 1993. Molecular Mat. 87: 215-219.
15. Born M Wolf E, 1980. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 6-th ed.Oxford. New York. Pergamon Press.
16. Gervais F, Piriou B, 1974. J. Phys. C: Solid St. Phys. 7: 2374-2386.
        doi:10.1088/0022-3719/7/13/017 http://dx.doi.org/10.1088/0022-3719/7/13/017
17. Merten L, Borstel G, 1972. Z.Naturforsch. 27A: 1792.
18. Szostak MM, Le Calve N, Romain F, Pasquier B, 1994. Chem. Phys. 187: 373-380.
        doi:10.1016/0301-0104(94)89019-6 http://dx.doi.org/10.1016/0301-0104(94)89019-6
19. Lynch DK, 1996. Astrophys. J. 467: 894-898.
        doi:10.1086/177664 http://dx.doi.org/10.1086/177664
20. Kopylevich YuI, Makarova EG, 1987. Opt. Spectr. 63: 147-153.
21. Turrell G, 1972. Infrared and Raman spectra of crystals. Academic Press. London and New York.
22. Zaenger W, 1991. Hydrogen bonding in biological molecules. Springer-Verlag.
23. Bryksin VV, Gerbstein YuM, Mirlin DM, 1971. Phys. Sol. St. 13: 1603-1610.
24. Genzel L, Martin TP, 1972. Phys. Stat. Sol. 51: 91-106.
25. El-Gohary AR, Parker TJ, Raj N, Tilley DR, Dobson PJ, Hilton D, Foxon CTR, 1989. Semicond. Sci. Techn. 4: 388-392.
26. Venger EF, Goncharenko AV, Dmitruk ML, 1999. Optic of small particles and dispersed matter. K.: "Naukova Dumka".
27. Ivanov OYu, 1999. Molecular structure and thermodinamic parameters of isomer transitions of doped bioorganic molecules, condensed in low-temperature matrices of inert gas. Ph.D thesis. Kharkiv.
28. Amelkin SV, Oraevsky AN, 1988. Multiphoton excitation of molecular vibrations in electric field. Proceedings FIAN 178-201.
29. Elyashevich MA, 1962. Atomic and molecular spectroscopy, State Publ. Phys.-Math. Lit. Moscow.

Home | Instructions to Authors | Editorial Board | Meetings & Exhibitions